Target adverse drug event | Non-target adverse drug event | Sums | |
---|---|---|---|
Ganirelix | a | b | a + b |
Non-ganirelix | c | d | c + d |
Total | a + c | b + d | a + b + c + d |
Methods | Formula | Threshold | |
ROR | \(\:ROR=\frac{a/c}{b/d}\) | \(\:\text{a}\ge\:3\) | |
\(\:SE\left(lnROR\right)=\sqrt{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})}\) | |||
\(\:95\text{\%}\text{C}\text{I}={\text{e}}^{\text{ln}\left(\text{R}\text{O}\text{R}\right)\pm\:1.96\text{s}\text{e}}\) | \(\:95\text{\%}\text{C}\text{I}\left(\text{l}\text{o}\text{w}\text{e}\text{r}\:\text{l}\text{i}\text{m}\text{i}\text{t}\right)>1\) | ||
PRR | \(\:\text{P}\text{R}\text{R}=\frac{a/(a+b)}{c/(c+d)}\) | \(\:\text{a}\ge\:3\) | |
χ2=[(ad-bc)^2](a + b + c + d)/[(a + b)(c + d)(a + c)(b + d)] | \(\:{\upchi\:}2\ge\:4\) | ||
BCPNN | \(\:\text{I}\text{C}={\text{log}}_{2}\frac{p(\text{x},\text{y})}{p\left(\text{x}\right)p\left(\text{y}\right)}={\text{log}}_{2}\frac{\text{a}(\text{a}+\text{b}+\text{c}+\text{d})}{(\text{a}+\text{b})(\text{a}+\text{c})}\) | \(\:\text{I}\text{C}025>0\) | |
\(\:\text{E}\left(\text{I}\text{C}\right)={\text{log}}_{2}\frac{(\text{a}+{\upgamma\:}11)(\text{a}+\text{b}+\text{c}+\text{d}+{\upalpha\:})(\text{a}+\text{b}+\text{c}+\text{d}+{\upbeta\:})}{(\text{a}+\text{b}+\text{c}+\text{d}+{\upgamma\:})(\text{a}+\text{b}+{\upalpha\:}1)(\text{a}+\text{c}+{\upbeta\:}1)}\) | |||
\({\rm{V}}\left( {{\rm{IC}}} \right) = {1 \over {{{\left( {\ln 2} \right)}^2}}}\left[ \matrix{{{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}}} \right) - {\rm{a}} + {\rm{\gamma }} - {\rm{\gamma }}11} \over {\left( {{\rm{a}} + {\rm{\gamma }}11} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\gamma }}} \right)}} + {{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}}} \right) - \left( {{\rm{a}} + {\rm{b}}} \right) + {\rm{a}} - {\rm{\alpha }}1} \over {\left( {{\rm{a}} + {\rm{b}} + {\rm{\alpha }}1} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\alpha }}} \right)}} \hfill \cr + {{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\alpha }}} \right) - \left( {{\rm{a}} + {\rm{c}}} \right) + {\rm{\beta }} - {\rm{\beta }}1} \over {\left( {{\rm{a}} + {\rm{b}} + {\rm{\beta }}1} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\beta }}} \right)}} \hfill \cr} \right]\) | |||
\(\:{\upgamma\:}={\upgamma\:}11\frac{(\text{a}+\text{b}+\text{c}+\text{d}+{\upalpha\:})(\text{a}+\text{b}+\text{c}+\text{d}+{\upbeta\:})}{(\text{a}+\text{b}+{\upalpha\:}1)(\text{a}+\text{c}+{\upbeta\:}1)}\) | |||
\(\:\text{I}\text{C}-2\text{S}\text{D}=\text{E}\left(\text{I}\text{C}\right)-2\sqrt{\text{V}\left(\text{I}\text{C}\right)}\) | |||
EBGM | \(\:\text{E}\text{B}\text{G}\text{M}=\frac{a(a+b+c+d)}{(a+c)(a+b)}\) | \(\:\text{E}\text{B}\text{G}\text{M}05>2\) | |
\(\:\text{S}\text{E}\left(\text{l}\text{n}\text{E}\text{B}\text{G}\text{M}\right)=\sqrt{(\frac{1}{\text{a}}+\frac{1}{\text{b}}+\frac{1}{\text{c}}+\frac{1}{\text{d}})}\) | |||
\(\:95\text{\%}\text{C}\text{I}={\text{e}}^{\text{ln}\left(\text{E}\text{B}\text{G}\text{M}\right)\pm\:1.96\text{s}\text{e}}\) |