Skip to main content

Table 1 A two-by-two contingency table and detailed formulas for disproportionality analysis

From: Post-marketing safety profile of ganirelix in women: a 20-year pharmacovigilance analysis of global adverse drug event databases (2004–2024)

 

Target adverse drug event

Non-target adverse drug event

Sums

Ganirelix

a

b

a + b

Non-ganirelix

c

d

c + d

Total

a + c

b + d

a + b + c + d

Methods

Formula

Threshold

ROR

\(\:ROR=\frac{a/c}{b/d}\)

\(\:\text{a}\ge\:3\)

\(\:SE\left(lnROR\right)=\sqrt{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})}\)

 

\(\:95\text{\%}\text{C}\text{I}={\text{e}}^{\text{ln}\left(\text{R}\text{O}\text{R}\right)\pm\:1.96\text{s}\text{e}}\)

\(\:95\text{\%}\text{C}\text{I}\left(\text{l}\text{o}\text{w}\text{e}\text{r}\:\text{l}\text{i}\text{m}\text{i}\text{t}\right)>1\)

PRR

\(\:\text{P}\text{R}\text{R}=\frac{a/(a+b)}{c/(c+d)}\)

\(\:\text{a}\ge\:3\)

χ2=[(ad-bc)^2](a + b + c + d)/[(a + b)(c + d)(a + c)(b + d)]

\(\:{\upchi\:}2\ge\:4\)

BCPNN

\(\:\text{I}\text{C}={\text{log}}_{2}\frac{p(\text{x},\text{y})}{p\left(\text{x}\right)p\left(\text{y}\right)}={\text{log}}_{2}\frac{\text{a}(\text{a}+\text{b}+\text{c}+\text{d})}{(\text{a}+\text{b})(\text{a}+\text{c})}\)

\(\:\text{I}\text{C}025>0\)

\(\:\text{E}\left(\text{I}\text{C}\right)={\text{log}}_{2}\frac{(\text{a}+{\upgamma\:}11)(\text{a}+\text{b}+\text{c}+\text{d}+{\upalpha\:})(\text{a}+\text{b}+\text{c}+\text{d}+{\upbeta\:})}{(\text{a}+\text{b}+\text{c}+\text{d}+{\upgamma\:})(\text{a}+\text{b}+{\upalpha\:}1)(\text{a}+\text{c}+{\upbeta\:}1)}\)

\({\rm{V}}\left( {{\rm{IC}}} \right) = {1 \over {{{\left( {\ln 2} \right)}^2}}}\left[ \matrix{{{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}}} \right) - {\rm{a}} + {\rm{\gamma }} - {\rm{\gamma }}11} \over {\left( {{\rm{a}} + {\rm{\gamma }}11} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\gamma }}} \right)}} + {{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}}} \right) - \left( {{\rm{a}} + {\rm{b}}} \right) + {\rm{a}} - {\rm{\alpha }}1} \over {\left( {{\rm{a}} + {\rm{b}} + {\rm{\alpha }}1} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\alpha }}} \right)}} \hfill \cr + {{\left( {{\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\alpha }}} \right) - \left( {{\rm{a}} + {\rm{c}}} \right) + {\rm{\beta }} - {\rm{\beta }}1} \over {\left( {{\rm{a}} + {\rm{b}} + {\rm{\beta }}1} \right)\left( {1 + {\rm{a}} + {\rm{b}} + {\rm{c}} + {\rm{d}} + {\rm{\beta }}} \right)}} \hfill \cr} \right]\)

\(\:{\upgamma\:}={\upgamma\:}11\frac{(\text{a}+\text{b}+\text{c}+\text{d}+{\upalpha\:})(\text{a}+\text{b}+\text{c}+\text{d}+{\upbeta\:})}{(\text{a}+\text{b}+{\upalpha\:}1)(\text{a}+\text{c}+{\upbeta\:}1)}\)

\(\:\text{I}\text{C}-2\text{S}\text{D}=\text{E}\left(\text{I}\text{C}\right)-2\sqrt{\text{V}\left(\text{I}\text{C}\right)}\)

EBGM

\(\:\text{E}\text{B}\text{G}\text{M}=\frac{a(a+b+c+d)}{(a+c)(a+b)}\)

\(\:\text{E}\text{B}\text{G}\text{M}05>2\)

\(\:\text{S}\text{E}\left(\text{l}\text{n}\text{E}\text{B}\text{G}\text{M}\right)=\sqrt{(\frac{1}{\text{a}}+\frac{1}{\text{b}}+\frac{1}{\text{c}}+\frac{1}{\text{d}})}\)

\(\:95\text{\%}\text{C}\text{I}={\text{e}}^{\text{ln}\left(\text{E}\text{B}\text{G}\text{M}\right)\pm\:1.96\text{s}\text{e}}\)

  1. Methods, formulas, and thresholds for calculating reporting odds ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM). Variable ‘a’ denotes the number of individuals who experience target adverse events after exposure to target drug, variable ‘b’ represents the number of individuals who experience non-target adverse event following target drug exposure, variable ‘c’ indicates the number of individuals experiencing target adverse event after exposure to non-target drug, and variable ‘d’ refers to the number of individuals experiencing non-target adverse event following non-target drug exposure. 95% CI, 95% confidence interval; χ2, chi-squared; IC, information component; IC025: Information Component 2.5th percentile. E(IC), IC expectations; V(IC), variance of IC; EBGM, empirical Bayesian geometric mean; EBGM05, lower limit of 95% CI of EBGM