# **MEETING ABSTRACT**



# The role of PGE<sub>2</sub> EP<sub>4</sub> receptors in the regulation of endothelial barrier function

Nora Kampitsch, Viktória Kónya, Rufina Schuligoi, Ákos Heinemann\*

*From* 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

## Background

Prostaglandin  $E_2$  plays a crucial role in inflammation, including pain, fever and tumorigenesis. Inflammatory cells, fibroblasts and epithelium are the main source of PGE<sub>2</sub> throughout an immune response. There are four known receptors for PGE<sub>2</sub>, E type prostanoid receptors 1-4 (EP<sub>1,2,3,4</sub>). According to recent reports, the EP<sub>4</sub> receptor seems to be a potential target of therapeutic treatment for attenuating inflammation as well as increased endothelial permeability.

#### Methods

Primary human microvascular endothelial cells of the lung (HMVEC-L) were cultured and transfected using siRNA approach. The mRNA level of the EP<sub>4</sub> receptor was determined using RT-PCR. EP<sub>4</sub> receptor protein expression was evaluated via Western blotting and flow cytometry. Changes in electrical impedance were measured using an ECIS application. Morphological alterations were observed via immunofluorescent staining of  $\beta$ -catenin and F-actin. Cell cycle and apoptosis analysis were performed using flow cytometry.

#### Results

The pulmonary microvascular endothelial cells express the  $PGE_2$  receptor  $EP_4$ , which was shown by flow cytometry and Western blotting. In endothelial cells,  $EP_4$ receptor protein expression was down-regulated to less than 40% by using the siRNA transfection approach. Also, the mRNA level of the  $EP_4$  receptor was significantly down-regulated below 15% using siRNA transfection. In the endothelial impedance measurements, the  $EP_4$  agonist and  $PGE_2$ -induced barrier enhancement was

\* Correspondence: akos.heinemann@medunigraz.at

Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz Austria

significantly suppressed in EP<sub>4</sub> receptor-silenced cells. Morphological studies revealed that the thrombininduced disruption of endothelial monolayers could be reversed by stimulation of EP<sub>4</sub> receptors. Cell-cell contacts were enhanced and stress fibre formation was prevented by pre-treatment with PGE<sub>2</sub> and an EP<sub>4</sub>-selective agonist. PGE<sub>2</sub> and the EP<sub>4</sub> agonist did not induce any changes in the endothelial cell cycle; however, EP<sub>4</sub> receptor activation appeared to be protective against staurosporine-induced apoptosis. Apoptotic cells were determined in the sub-G<sub>1</sub> phase of the cell cycle.

## Conclusions

These data suggest  $EP_4$  receptor agonists as potential therapeutic intervention for diseases with increased vascular permeability such as acute lung injury.

Published: 17 September 2012

doi:10.1186/2050-6511-13-S1-A20 Cite this article as: Kampitsch *et al.*: The role of PGE<sub>2</sub> EP<sub>4</sub> receptors in the regulation of endothelial barrier function. *BMC Pharmacology and Toxicology* 2012 **13**(Suppl 1):A20.



© 2012 Kampitsch et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.