MEETING ABSTRACT

TRPC3 overexpression promotes angiotensin II-induced cardiac dysfunction

Bernhard Doleschal¹, Stefan Wolf¹, Marie-Sophie Huber¹, Gerald Wölkart¹, Gudrun Antoons², Klaus Groschner^{3*}

From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background

TRPC3 was recently demonstrated as a player in pathogenesis of cardiac hypertrophy, while the potential proarrhythmogenic role of TRPC3 is incompletely understood. Using a TRPC3 transgenic overexpression mouse model, we examined the involvement of TRPC3 in cardiac actions of angiotensin II (AngII).

Methods

AngII effects on cardiac functions were characterized in Langendorff perfused hearts. Single ventricular myocytes were isolated and field-stimulated to measure effects on sarcomere shortening and Ca²⁺ transients. Furthermore, L-type Ca²⁺ channel current, action potentials and nonselective ion currents were analyzed electrophysiologically.

Results

AngII (100 nM) reduced left ventricular pressure (LVP) within 2 min to 64%, +dP/dt to 50% and -dP/dt to 55% of control in TRPC3(+/-) hearts, while even producing a positive inotropic effect in wild-type (WT) hearts. Simultaneously, ECG recordings demonstrated AngII-induced episodes of acute arrhythmogenicity in all TRPC3(+/-)hearts (n = 6), whereas rhythm of WT hearts (n = 6)remained unaffected. The AngII-induced impairment of cardiac functions in TRPC3(+/-) hearts was partially reversed by Pyr3 (30 μ M). The amplitude of Ca²⁺ transient was significantly higher (p < 0.05; n = 60) in myocytes from TRPC3(+/-) mice ($[Ca^{2+}] F/F_0 0.354 \pm 0.024$) as compared to WT ($[Ca^{2+}]$ F/F₀ 0.262 ± 0.021). Also, the time constant (τ) of Ca²⁺ decline was different between WT (0.196 \pm 0.009 ms; n = 61) and TRPC3(+/-) (0.170 \pm 0.008; n = 67; p < 0.05). Sarcomere shortening showed no

* Correspondence: klaus.groschner@medunigraz.at

³Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria Full list of author information is available at the end of the article

Conclusions

Our results demonstrate that AngII modulation of cardiac functions is strictly dependent on TRPC3 expression and suggest a key role of TRPC channels in AngIImediated arrhythmogenicity.

Acknowledgements

Supported by the Austrian Science Fund FWF and the International PhD Program Metabolic and Cardiovascular Disease DK-MCD.

Author details

¹Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria. ²Division of Cardiology, Medical University of Graz, 8036 Graz, Austria. ³Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria,

© 2012 Doleschal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published: 17 September 2012

doi:10.1186/2050-6511-13-S1-A83 Cite this article as: Doleschal *et al.*: TRPC3 overexpression promotes angiotensin II-induced cardiac dysfunction. *BMC Pharmacology and Toxicology* 2012 13(Suppl 1):A83.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central