

MEETING ABSTRACT

Open Access

Plasma nitrite concentrations decrease after hyperoxia-induced oxidative stress in healthy humans

Darko Modun^{1*}, Mladen Krnić², Jonatan Vuković¹, Višnja Kokić¹, Lea Kukoč-Modun³, Dimitrios Tsikas⁴, Zeljko Dujić⁵

From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background

We measured plasma nitrite, the biochemical marker of endothelial nitric oxide ('NO) synthesis, before and after hyperoxia, in order to test the hypothesis that hyperoxia-induced vasoconstriction is a consequence of reduced bioavailability of 'NO due to elevated oxidative stress.

Methods

Ten healthy males breathed 100% normobaric O_2 for 30 min between the 15^{th} and 45^{th} min of the 1 h study protocol. Plasma nitrite and malondialdehyde (MDA), arterial stiffness (indicated by augmentation index, AIx) and arterial oxygen ($P_{tc}O_2$) pressure were measured in the 1^{st} , 15^{th} , 45^{th} and 60^{th} minute of the study.

Results

Breathing of normobaric 100% oxygen during 30 min caused an increase of $P_{tc}O_2$ (from 75 \pm 2 to 412 \pm 25 mm Hg), AIx (from –63 \pm 4 to –51 \pm 3%) and MDA (from 152 \pm 13 to 218 \pm 15 nmol/L) and a decrease in plasma nitrite (from 918 \pm 58 to 773 \pm 55 nmol/L). During the 15-min recovery phase the plasma nitrite, AIx and MDA values remained altered.

Conclusions

This study suggests that the underlying mechanism of hyperoxia-induced vasoconstriction may result from reduced 'NO bioavailability due to elevated and sustained oxidative stress.

Full list of author information is available at the end of the article

Author details

¹Department of Pharmacology, School of Medicine, University of Split, 21000 Split, Croatia. ²Department of Endocrinology, University Hospital Split, 21000 Split, Croatia. ³Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia. ⁴Institute of Clinical Pharmacology, Hannover Medical School, 30625 Hannover, Germany. ⁵Department of Physiology, School of Medicine, University of Split, 21000 Split, Croatia.

Published: 17 September 2012

doi:10.1186/2050-6511-13-S1-A88

Cite this article as: Modun *et al.*: **Plasma nitrite concentrations decrease after hyperoxia-induced oxidative stress in healthy humans.** *BMC Pharmacology and Toxicology* 2012 **13**(Suppl 1):A88.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: darko.modun@mefst.hr

¹Department of Pharmacology, School of Medicine, University of Split, 21000 Split. Croatia