MEETING ABSTRACT

Antiepileptic activity and subtype-selective action of flupirtine at GABA_A receptors

Mirnes Bajrić, Felicia Klinger, Ulla Schandl, Helmut Kubista, Stefan Boehm*

From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background

Flupirtine is used as analgesic drug with muscle-relaxant properties. In addition, it has been suggested to possess antiepileptic properties. Recently, flupirtine has been revealed to simultaneously act at K_V7 channels and GABA_A receptors. Here, antiepileptic activity and underlying mechanisms of action of flupirtine were investigated.

Methods

We used the patch clamp technique and primary cultures of hippocampal neurons or transfected tsA cells to investigate effects of flupirtine.

Results

In hippocampal neurons, flupirtine reduced seizure-like activity with no effect at 1 to 3 μ M, and maximal effects at 10 to 30 μ M; it enhanced currents through K_V7 channels with EC_{50} values at 6 μ M. Flupirtine (30 μ M) modulated GABA-induced currents in hippocampal neurons by reducing EC₅₀ values for GABA threefold and maximal current amplitudes by 15%. Hence, flupirtine acted as an uncompetitive antagonist. Flupirtine did not alter rise time, decay time, or amplitudes of miniature inhibitory postsynaptic currents (mIPSCs), but enhanced the bicuculline-sensitive tonic current. When phasic GABAergic inhibition was blocked by penicillin G (5 mM), flupirtine enhanced maximal amplitudes of GABA-evoked currents by 43%, but hardly affected EC_{50} values. As these results suggested that flupirtine was able to differentiate between different GABA_A receptor subtypes, its effects on recombinant GABA_A receptors were

* Correspondence: stefan.boehm@meduniwien.ac.at

Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria investigated in tsA cells. With $\alpha 1\beta 2\gamma 2$ receptors, flupirtine reduced EC₅₀ values for GABA threefold and maximal current amplitudes by 25%; with $\alpha 1\beta 2$ receptors, it reduced EC₅₀ values for GABA twofold, but reduced maximal current amplitudes by 35%.

Conclusions

These results indicate that flupirtine (i) exerts antiepileptic activity, (ii) modulates tonic, but not phasic, GABAergic inhibition and blocks K_V7 channels in hippocampal neurons, and (iii) affects GABA_A receptors in a subunit-dependent manner.

Acknowledgements

This study is supported by the Austrian Science Fund (P23658).

Published: 17 September 2012

doi:10.1186/2050-6511-13-S1-A90 Cite this article as: Bajrić *et al.*: Antiepileptic activity and subtypeselective action of flupirtine at GABA_A receptors. *BMC Pharmacology and Toxicology* 2012 13(Suppl 1):A90.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2012 Bajrić et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.