ORAL PRESENTATION

Open Access

Chronic beta-adrenergic blockade prevents volume overload-induced re-localization and oxidation of soluble guanylyl cyclase

Yuchuan Liu¹, Louis Dell'Italia², Victor Rizzo^{1,3}, Emily J Tsai^{1,4*}

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

While β -adrenergic blockade is a cornerstone of heart failure therapy, its therapeutic role in chronic mitral regurgitation remains questionable. Animal studies and a small clinical trial have demonstrated cardiac functional improvement with β_1 -adrenoceptor blocker metoprolol in chronic mitral regurgitation [1,2]. How β_1 AR-blockade halts functional decline of the volume-overloaded, eccentric hypertrophied heart is not well understood; anti-oxidant effects of β -blockade (β B) may play a role. We recently demonstrated that volume-overload cardiac stress induces re-localization and microdomain-specific oxidation of the nitric oxide receptor soluble guanylyl cyclase (sGC) in the failing heart [3,4]. Given that nitric oxide-cyclic guanosine monophosphate (NO-cGMP) modulates cardiac contractility and protects against cardiac hypertrophy, we hypothesized that β_1 AR-blockade prevents oxidation of sGC and promotes myocardial NO-cGMP signaling in a microdomain-specific fashion.

Materials and methods

Volume-overload (VO) was established by chordal ruptureinduced mitral regurgitation (MR) in mongrel dogs. Some dogs were treated with metoprolol succinate (100mg orally once daily; MR+ β B). Expression, localization, cyclase activity, and redox state of myocardial sGC were assessed in Control, MR, and MR+ β B dogs.

Results

 $sGC\alpha_1$ and $-\beta_1$ subunits were detected within and outside of caveolae-enriched lipid rafts (Cav3⁺LR). In MR,

* Correspondence: emily.tsai@tuhs.temple.edu

¹Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA

Full list of author information is available at the end of the article

total sGC α_1 expression fell to nearly 50% of Control and re-localized away from Cav3⁺LR to non-lipid raft microdomains (NLR). While overall $sGC\beta_1$ expression was also less in MR+ β B, caveolae-localization of sGC β_1 was preserved. Overall NO-responsiveness of sGC remained intact in MR hearts, irrespective of BB therapy. However, a potentiated response to heme/NO-independent sGC activator BAY 60-2770 suggested that a subset of sGC was heme-oxidized in MR but not in Control or MR+ β B. Moreover, differential responses to BAY 60-2770 and NO were noted in Cav3⁺LR and NLR microdomains. In Control hearts, responses to BAY 60-2770 and NO were similar within respective microdomains, suggesting a predominantly reduced form of sGC in both Cav3⁺LR and NLR of Controls. In contrast, BAY 60-2770 response of NLR-localized sGC was potentiated in MR but not in MR+ β B hearts, suggesting that β B therapy prevented oxidation of NLR-localized sGC. Moreover, BAY 60-2770 responses of Cav3⁺LR-localized sGC were not potentiated in any hearts, suggesting an anti-oxidation protection associated with caveolae-localization. These changes in caveolae-localization and redox state of sGC were also reflected by microdomain distribution of VASP phosphorylation.

Conclusion

 β_1AR blocker mediated cardioprotection in the volumeoverloaded heart is associated with enhanced microdomain specific myocardial NO-cGMP signaling, both within and outside of caveolae. Such prevention of volume overload-induced spatial and redox dysregulation of myocardial sGC suggests novel strategies to enhancing cardioprotective NO-cGMP signaling.

© 2013 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors' details

¹Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA. ²Division of Cardiovascular Disease, Department of Medicine, University of Alabama Birmingham School of Medicine, Birmingham, AL, 35233, USA. ³Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. ⁴Section of Cardiology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA.

Published: 29 August 2013

References

- Pat B, Killingsworth C, Denney T, Zheng J, Powell P, Tillson M, Dillon AR, Dell'Italia LJ: Dissociation between cardiomyocyte function and remodeling in beta-adrenergic receptor blockade in isolated canine mitral regurgitation. Am J Physiol Heart Circ Physiol 2008, 295:H2321-H2327.
- Ahmed MI, Aban I, Lloyd SG, Gupta H, Howard G, Inusah S, Peri K, Robinson J, Smith P, McGiffin DC, Schiros CG, Denney T Jr, Dell'Italia LJ: A randomized controlled phase IIb trial of beta(1)-receptor blockade for chronic degenerative mitral regurgitation. J Am Coll Cardiol 2012, 60:833-838.
- Tsai EJ, Liu Y, Koitabashi N, Bedja D, Danner T, Jasmin JF, Lisanti MP, Friebe A, Takimoto E, Kass DA: Pressure-overload induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. *Circ Res* 2012, 110:295-303.
- Liu Y, Dillon AR, Tillson M, Makarewich C, Nguen V, Dell'Italia L, Sabria A, Rizzo V, Tsai EJ: Volume overload induces differential spatiotemporal regulation of myocardial soluble guanylyl cyclase in eccentric hypertrophy and heart failure. J Mol Cell Cardiol 2013, 60:72-83.

doi:10.1186/2050-6511-14-S1-O22

Cite this article as: Liu *et al.*: Chronic beta-adrenergic blockade prevents volume overload-induced re-localization and oxidation of soluble guanylyl cyclase. *BMC Pharmacology and Toxicology* 2013 **14**(Suppl 1):O22.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit