

**Open Access** 

### **ORAL PRESENTATION**

# NO-H<sub>2</sub>S interactions involve cGMP

Andreas Papapetropoulos

*From* 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

#### Background

Hydrogen sulfide ( $H_2S$ ) and nitric oxide (NO) have been recognized as endogenous signaling molecules, involved in a variety of homeostatic and disease processes. Although it is well-established that NO increases cGMP content of cells and tissues by activating soluble guanylyl cyclase (sGC), the ability of  $H_2S$  to affect cyclic nucleotides levels has been controversial.

#### Results

We have shown that H<sub>2</sub>S increases cGMP in both endothelial and smooth muscle cells. However, H<sub>2</sub>S does not activate sGC or alter NO-induced sGC activity. Interestingly, H<sub>2</sub>S inhibits phosphodiesterase (PDE) activity; although it reduces PDE activity of several PDE H<sub>2</sub>S is most effective and potent against PDE-5. IN line with the ability of H<sub>2</sub>S to increase cellular cGMP, we observed that exposure of cells to H<sub>2</sub>S leads to activation of cGMPdependent protein kinase and VASP phosphorylation. As both NO and H<sub>2</sub>S promote angiogenesis and vasodilation we explored their interactions in the vessel wall in the context of these two biological processes. Inhibition of eNOS or PKG reduced the H<sub>2</sub>S-stumlated angiogenic properties of endothelial cells, as well as H<sub>2</sub>S-stimulated vasorelaxation, suggesting a prominent role for cGMP/ PKG pathways in H<sub>2</sub>S signaling. On the other hand, silencing of the H<sub>2</sub>S-producing enzyme cystathionine- $\gamma$ -lyase (CSE) reduced NO-stimulated cGMP accumulation, angiogenesis and smooth muscle relaxation, proving that NO requires H<sub>2</sub>S to manifest its effects. Finally, H<sub>2</sub>Sinduced wound healing and angiogenesis in vivo was suppressed by pharmacological inhibition or genetic ablation of eNOS.

Laboratory for Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece

#### Conclusion

Inhibition of the production of one gasotransmitter (NO or  $H_2S$ ) reduces the ability of the other to elevate cGMP and to trigger angiogenesis and vasodilation. These observations establish the existence of a positive, synergistic cross-talk between  $H_2S$  and NO in vascular tissues.

#### Acknowledgements

Much of the above-mentioned work has been done through collaborative efforts in the context of the European Network of Gasotransmitters (COST-BM1005) that is funded through the European Science Foundation.

Published: 29 August 2013

doi:10.1186/2050-6511-14-S1-O32 Cite this article as: Papapetropoulos: NO-H<sub>2</sub>S interactions involve cGMP. BMC Pharmacology and Toxicology 2013 14(Suppl 1):O32.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit



© 2013 Papapetropoulos; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence: apapapet@upatras.gr