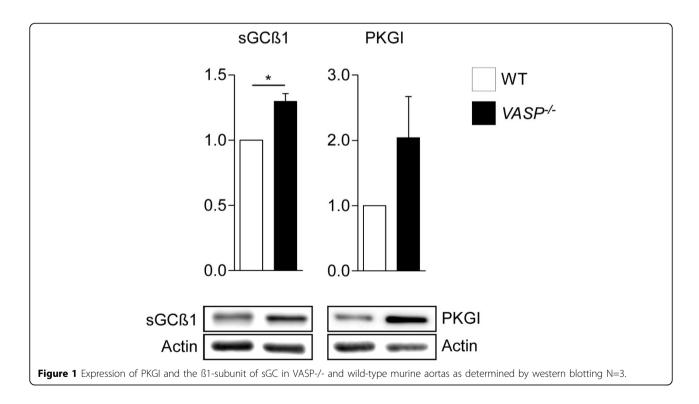
POSTER PRESENTATION


The role of VASP in cGMP-mediated vascular smooth muscle relaxation

Staffan Hildebrand^{1,2*}, Katrin Zimmermann^{1,2}, Daniela Wenzel³, Bernd K Fleischmann³, Alexander Pfeifer^{1,2}

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

Cyclic GMP (cGMP) is a major mediator of relaxation in the vascular system. cGMP is produced by the enzyme soluble Guanylyl Cyclase (sGC) in response to nitric oxide (NO) released from neighbouring endothelial cells. cGMP activates Protein Kinase G (PKG), which in turn mediates vascular relaxation through phosophorylation of various targets. One of the major substrates of PKG is the VAsodilator-Stimulated Phosphoprotein (VASP). The role of VASP in vascular smooth muscle relaxation is currently unknown. However, recent studies show that VASP-deficient brown adipocytes have an increased

* Correspondence: shil@uni-bonn.de

¹Institute of Pharmacology and Toxicology, University of Bonn, Bonn, NRW, 53105. Germany

Full list of author information is available at the end of the article

© 2013 Hildebrand et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

activity of the small GTPase Rac1 and elevated levels of sGC [1]. These data suggest a regulatory role for VASP in cGMP-mediated processes.

Results

Preliminary data acquired from the analysis of VASP-deficient (VASP-/-) mice provide evidence for the importance of VASP in the cGMP mediated relaxation pathway: VASP-/- aortas show higher levels of PKG and sGC compared to wild type (see Figure 1), and increased sensitivity to NO-induced relaxation. Additionally, cultured vascular smooth muscle cells (VSMCs) transduced with a constitutively active Rac1 mutant (RacL61) show elevated sGC and PKG expression as well as increased PKG activity. Cultured VSMCs from VASP-/- aortas also demonstrate decreased proliferation rates compared to wild-type cells in preliminary experiments.

Authors' details

¹Institute of Pharmacology and Toxicology, University of Bonn, Bonn, NRW, 53105, Germany. ²NRW International Graduate School BIOTECH-PHARMA, Bonn, NRW, 53105, Germany. ³Institute of Physiology I, University of Bonn, Bonn, NRW, 53105, Germany.

Published: 29 August 2013

Reference

 Jennissen K, Siegel F, Liebig-Gonglach M, Hermann M-R, Kipschull S, van Dooren S, Kunz WS, Fässler R, Pfeifer A: A VASP-Rac-soluble guanylyl cyclase pathway controls cGMP production in adipocytes. *Sci Signal* 2012, 5:ra62.

doi:10.1186/2050-6511-14-S1-P28 Cite this article as: Hildebrand *et al.*: The role of VASP in cGMPmediated vascular smooth muscle relaxation. *BMC Pharmacology and Toxicology* 2013 14(Suppl 1):P28.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central