POSTER PRESENTATION

Open Access

NO/cGMP/pCREB re-activation reverses cognition deficits and attenuates amyloid- β neuropathology in transgenic models of Alzheimer's disease

Gregory RJ Thatcher^{1,2*}, Jia Luo^{1,3}, Lawren VandeVrede¹, Zhihui Qin¹, Sue Lee¹, Ramy Abdelhamid¹, Brian M Bennett⁴, Mary Jo LaDu⁵, Leon Tai⁵, John Larson⁶

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

An early event in Alzheimer's Disease (AD) is synaptic failure, making the disease fundamentally a disorder of impaired cognition and memory. Synaptic plasticity requires activation of gene expression programs with dysfunction of the transcription factor cAMP-response element binding protein (CREB) strongly implicated in AD etiology.

Results and Conclusion

The hypothesis that activation of CREB through NO/ cGMP signaling might modify the amyloid- β (A β) neuropathology, linked to AD pathogenesis, was demonstrated in both APP/PS1 and 3xTg transgenic mouse models of AD using small molecules, termed nomethiazoles, also designed to provide neuroprotection and attenuate pro-inflammatory cytokine release. Functional restoration of long-term potentiation was shown in hippocampal slices from AD transgenic mice in accord with observation of restoration of cognitive function in *vivo*, and was dependent upon soluble guanylyl cyclase (sGC) activation. Levels of pCREB and BDNF were significantly elevated, whereas TNF α , A β , oligometic A β_{1-} 42, and also tau protein were significantly lowered after drug treatment. In the absence of neuronal loss in animal models of AD, neuroprotection was demonstrated in rat primary neurons after oxygen-glucose deprivation or application of oligometric A β . The lead nomethiazole was also studied in a novel transgenic mouse model,

* Correspondence: thatcher@uic.edu

E4FAD, which incorporates familial AD mutations, but also has targeted replacement of mouse apolipoprotein-E with human ApoE4, the major genetic risk factor for sporadic and age-related AD.

Authors' details

¹Department of Medicinal Chemistry & Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA. ²UlCentre (drug discovery @ UIC), UIC, Chicago, IL 60612, USA. ³CGC Pharma Inc., Chicago, IL; and Cambridge, MA 02142, USA. ⁴Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Kingston, Ontario, Canada. ⁵Department of Anatomy and Cell Biology, UIC, Chicago, IL 60612, USA. ⁶Department of Psychiatry, Neuropsychiatric Institute, UIC, Chicago, IL 60612, USA.

Published: 29 August 2013

doi:10.1186/2050-6511-14-S1-P72 Cite this article as: Thatcher *et al.*: NO/cGMP/pCREB re-activation reverses cognition deficits and attenuates amyloid- β neuropathology in transgenic models of Alzheimer's disease. *BMC Pharmacology and Toxicology* 2013 14(Suppl 1):P72.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Thatcher et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Medicinal Chemistry & Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA

Full list of author information is available at the end of the article