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Abstract

Background: Ovarian cancer is the world’s dreaded disease and its prevalence is expanding globally. The study of
integrated molecular networks is crucial for the basic mechanism of cancer cells and their progression. During the
present investigation, we have examined different flavonoids that target protein kinases B (AKT1) protein which
exerts their anticancer efficiency intriguing the role in cross-talk cell signalling, by metabolic processes through in-
silico approaches.

Method: Molecular dynamics simulation (MDS) was performed to analyze and evaluate the stability of the
complexes under physiological conditions and the results were congruent with molecular docking. This
investigation revealed the effect of a point mutation (W80R), considered based on their frequency of occurrence,
with AKT1 protein.

Results: The ligand with high docking scores and favourable behaviour on dynamic simulations are proposed as
potential W80R inhibitors. A virtual screening analysis was performed with 12,000 flavonoids satisfying Lipinski’s rule
of five according to which drug-likeness is predicted based on its pharmacological and biological properties to be
active and taken orally. The pharmacokinetic ADME (adsorption, digestion, metabolism, and excretion) studies
featured drug-likeness. Subsequently, a statistically significant 3D-QSAR model of high correlation coefficient (R2)
with 0.822 and cross-validation coefficient (Q2) with 0.6132 at 4 component PLS (partial least square) were used to
verify the accuracy of the models. Taxifolin holds good interactions with the binding domain of W80R, highest
Glide score of − 9.63 kcal/mol with OH of GLU234 and H bond ASP274 and LEU156 amino acid residues and one pi-
cation interaction and one hydrophobic bond with LYS276.
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Conclusion: Natural compounds have always been a richest source of active compounds with a wide variety of
structures, therefore, these compounds showed a special inspiration for medical chemists. The present study has
aimed molecular docking and molecular dynamics simulation studies on taxifolin targeting W80R mutant protein of
protein kinase B/serine- threonine kinase/AKT1 (EC:2.7.11.1) protein of ovarian cancer for designing therapeutic
intervention. The expected result supported the molecular cause in a mutant form which resulted in a gain of
ovarian cancer. Here we discussed validations computationally and yet experimental evaluation or in vivo studies
are endorsed for further study. Several of these compounds should become the next marvels for early detection of
ovarian cancer.
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Background
Ovarian cancer marks the most lethal gynaecological
malignancy which ranks the fifth marveling cause of
cancer deaths in females [1]. It is estimated that there
are 22,530 cases with a mortality rate of approximately
13,980 deaths in the United States in 2019 [1] Ovarian
cancers are categorized into 3 types based on cell origin:
epithelial, stromal and germ cell [2]. The low survival
rate and poor prognosis of ovarian cancer are due to a
lack of screening methods at the early stages and inef-
fective treatments for advanced stages of disease [3].
Moreover it is very crucial to dissect the role of tumor-
causing microenvironment during the early stage, prolif-
eration, and metastasis. Thus, it becomes paramount to
understand the root cause from different views of its
molecular pathogenesis, histological subtypes, hereditary
factors, epidemiology, methods of treatment, and diag-
nostic perspectives. The Cancer Genome Atlas (TCGA)
revealed that the expression of AKT1, AKT2, and AKT3
was associated with poor patient survival [4]. The mar-
veling cause of the disease is due to genetic and epigen-
etic changes of the cellular genome. Numerous small
drug molecules of AKT gene targeting mutations such
as FOXO, glucose metabolism (GSK3), and apoptotic
proteins (BAD, NF-kB, FKHR) are available. Cell cycle
arrest, apoptosis, DNA repair (MDM2) are critical in
disease progression. Among various kinases, overexpres-
sion of AKT1 protein and associated mutations play a
deciding role in cross-talk cell signalling in causing can-
cer. Recent studies have introduced assorted therapeutic
agents as targets specific for cancer-driven factors in-
volved in the inhibition of ovarian cancer development.
One such factor of the kinase family is protein kinase B/
serine-threonine (EC:2.7.11.1) (https://www.brenda-
enzymes.org/index.php) serves as a decisive mediator of
the P13K/AKT/mTOR cell signaling pathway that has
distinct physiological functions such as cell growth, sur-
vival, proliferation, and metabolism [5]. Structurally
AKT1 consists of three domains, including an N-
terminal pleckstrin homology, a central catalytic kinases
domain, and C-terminal domain [6].

AKT1 is the kinase that connects upstream signals
from PI3K and mammalian targets of rapamycin com-
plex2 (mTORC2) with downstream signals to mTORC1
and effectors such as mTOR, GSK3b along with phos-
phorylation cascade which acts as substrates that induce
cell cycle progression, protein synthesis, lipid and pro-
tein phosphatases, glucose metabolism and cell growth
[7]. AKT1 is mutated and AKT2 is amplified in about
40% AKT1 is inhibited by tumor suppressors including
phosphatase and tensin homolog (PTEN) and inositol
polyphosphate 4-phosphatase type 2 INPP4B [8, 9].
Therefore, targeting ATP binding cleft of AKT protein
by inhibitors (natural/synthetic) has become an attract-
ive strategy for treating patients in ovarian cancer. Inter-
estingly, AKT1 protein inhibitors showed a strong
binding affinity with mutant forms when compared to
the native form. However, the emergence of acquired
drug resistance in patients was found to limit its usage
in the last phase of clinical trials. In ovarian cancer,
overexpression of AKT is associated with advanced-
stage platinum resistance [10, 11]. As an isoform of the
AKT family, AKT1 is observed to be expressed unduly
in a wide assortment of many human cancers including
breast and ovarian cancers [12, 13]. The underlying mo-
lecular mechanism is assumed to cause conformational
changes in native protein structure (AKT1) which mod-
ify covalent bond interaction by limiting their practical
application. On that account, there is a need to search
and develop novel as well as regimes that can counteract
the drug resistance induced by the AKT1 gene. Even so,
the molecular interactions and atomic stability for the
W80R have also been determined for the present study.
W80R results in increased repression of FOXO 3 com-

pared to wild type AKT1 in an invitro assay which is
then predicted to result in a gain of AKT1 protein func-
tion. FOXO is a transcription factor in the nucleus that
induces CGN2 transcription in epithelial ovarian cancer
cells with enhanced catenin activity. The absence of Wnt
ligand dissociates catenin from the destruction complex
and translocates to the nucleus where it acts with the
FOXO3 factor which is known to play a role in the
W80R protein pathway. Abnormal activation of this
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pathway marvels to hyper-activation of catenin, which
has been reported in ovarian cancers. W80R is one of
the reported mutants of AKT1 cancer which cause mis-
sense driver mutation with 238 T > C of the coding se-
quence, also CDS (change in the nucleotide sequence as
a result of mutation, where the syntax here used is iden-
tical to the method used for the peptide sequence) muta-
tion c.238 T > A with gene location 14q32.33 [14] in the
uterus section causing endometrial cancer. It has been
proved that W80R contains highly conserved residues
damaged by polyphen2, targeting through PI3K/AKT1/
mTOR pathway of substitution-missense variant type af-
fecting exon of protein domain PH (the UniProt Consor-
tium 2019) and SIFT prediction as 3 [12]. The mutant
W80R-Q79K on combination found to be displayed a
very strong membrane localization and hyperactivation
in transfected HeLa cells in both presence and absence
of serum under fluorescence microscopy [15]. The previ-
ous studies of AKT1 co-occurring mutations (like
Q79K-W80R) found to be hyperactive equal to E17K
mutant widely distributed in different tissues such as
endometrium (homozygous and heterozygous), large in-
testine (caecum), prostrate (with heterozygosity condi-
tion) breast cancers involving cross-talk signaling
pathways [16]. The deleterious mutations of AKT1
(E17K and W80R) concluded to be of functional rele-
vance exclusively in myxoid tumors [17]. The altering
mutations promote growth factor independent cell pro-
liferation as compared to wild type AKT [18]. AKT1gene
alterations account for most of the genetic drive contrib-
uting to the pulmonary sclerosing haemangioma which
is a benign tumor development [19]. It was observed in
the patients receiving gnomically targeted therapy that
W80R mutant found to be in clinical benefit of SD 4
mo + (stable disease), working efficiently with synthetic
drugs temsirolimus and ixabepilone targeting ovary
granulosa cell [20]. In line with, the inhibition of
AKT1or its mutant proteins has been recognized as a
compelling strategy for the treatment of cancers with
[21] induce ovarian tumor angiogenesis [22] and in im-
mune evasion [23].
Existing chemotherapeutic drugs have developed re-

sistance to the novel compounds along with side effects
despite enormous progress in anticancer drug discovery.
Hence more targeted strategies are required to develop
with sensitivity and specificity. Most of the successful
anticancer compounds were originated from natural
sources or as their analogs. Natural products and their
synthetic analogues are a rich source of biologically ac-
tive compounds which have been recognised as cancer
stem cells (CSCs). These anti-CSCs natural products in-
clude flavinoids, stilbenes, quinines, terepenoids, polyke-
tide antibiotics, steroids and alkaloids [24]. Flavonoids
are naturally occurring secondary metabolites consisting

of polyphenols having therapeutic benefits in multiple
ways. These are low-molecular-weight compounds with
non-nitrogenous properties consisting of C6-C3-C6 as a
backbone with different classes [25] and their activities
are structure-dependent. Chemically, flavonoids depend
on their structural class, degree of hydroxylation, substi-
tutions, and conjugations, and degree of polymerization
[26]. Several mechanisms have been proposed for the ef-
fect of flavonoids at the initiation and promotion stages
of the carcinogenicity including influences on develop-
ment and hormonal activities [27]. Flavonoids fall under
6 different categories based on the functional group fla-
vones (luteolin, apigenin), flavonols (quercetin, kaemp-
ferol), flavanones (naringenin), flavanonol (taxifolin),
isoflavones, and flavan-3-ols (genistein, epicatechin, cat-
echin, wedelactone, ellagic acid, silibinin, folstein,
parthenoilods, oridonin, curcumin, reservertol. The
choice of this study has relied on the compounds of the
family called flavonoids with a tremendous variety of
pharmacological and biochemical consequences includ-
ing hepatoprotective, antidiabetic, cardio protective,
anti-tumor, neuroprotective, and anti-inflammatory and
played a wonderful role in the preclusion of Alzheimer’s
disease. Equally studies on quercetin (QUR) demon-
strated as its effect on anti-inflammatory, anti-apoptotic,
antioxidant, and anticancer agent. This also found to im-
prove the quality of oocytes and embryos. It affects the
proliferation and apoptosis and thereby decreases in oxi-
dative stress in granulose cells (GCs). Furthermore, it is
also used as a complementary and alternative therapy in
ovarian cancer with beneficial effects in treatment with
PCOS (polycystic ovary syndrome) patient [28]. In an
earlier investigation, this area has demanded series of
chemical methods and animal models to synthesis mar-
vel compounds with more time, investment, and level of
exposure. To overcome this issue, computational ap-
proaches have opened doors for inquisition in predicting
the mutation both in induced drug resistance and also
to design resistance evading drugs. As a result of the
above-mentioned shortfalls, the present study has aimed
at the dynamic simulation at the molecular level and
molecular docking studies on taxifolin targeting W80R
mutant protein in protein kinase B/serine-threonine kin-
ase/AKT1 protein of Ovarian cancer for designing thera-
peutic. This computational study relies on learning and
pattern classification methods which can classify muta-
tions create 3D protein structures.

Materials and methods
Sequence retrieval and structure analysis of selected
protein
The amino acid sequence of AKT1 protein was retrieved
from the Uniprot database with accession number
P31749. The primary structure of the protein was
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elucidated using the ProtParam tool [29] of the Expasy
server and the difference between physical and chemical
properties of the AKT1 protein (wild) and mutant
(W80R) were evaluated. Factors such as physicochemical
properties, molecular weight, theoretical pI (isoelectric
point), half-life, instability index (II), aliphatic index (AI),
extinction coefficient (EI), grand average hydropathy
(GRAVY), and site of origin were analyzed. The second-
ary structure properties prediction was carried out by
the RAMPAGE server, which provides the configuration
score like the total number of helices, turns, coils, pre-
dicted solvent accessibility, with the range, existed from
0 (highly buried) to 9 (exposed region) depending on the
residue exposed. Normalized B-factor is measured for a
selected protein as Z score which is a combination of
template and profile-based prediction where residues are
higher than zero are considered as less stable during ex-
perimental structures. The mutant protein W80R was
edited manually at the amino acid position number and
submitted to homology modelling [30].

3D modelling of W80R protein
Apart from successful experimental methods such as x-
ray crystallography and nuclear magnetic resonance for
3D structures, there still exists the knowledge gap about
the structural information about the protein. However,
computational methodology fills the gap by an approach
called Homology Modelling and makes it fit for the drug
discovery purposes. The 480 amino acid residue length
of W80R protein was retrieved to recognize the appro-
priate template sequence (PDB access code: 3O96) for
structure modelling and functional prediction of the
protein. This modelling depends mainly on a sequence
alignment between the target and template sequence
whose structure has been experimentally determined
with [31, 32] the 3D structure of the target protein using
its template was performed by MODELLAR (https://
salilab.org/modeller/) and visualized by the PYMOL tool;
based on template-target alignment. These theoretical
structural models of the W80R protein were ranked
based on the normalized discrete RMSD values. The
model with the lowest RMSD score was considered as
the best model [33].

Evaluation of the structure model
The quality of AKT1 and mutant form W80R models
were assessed by many tools to evaluate the stability and
reliability of the model. PROCHECK suite [34] quantifies
the residues in favorable zones of the Ramachandran
plot, was used to evaluate the stereochemical quality of
the model. ERRATA tool [35] finds the overall quality
factor of the protein and was used to check the statistics
of non-bonded interactions between different atom
types. The compatibility of the atomic model (3D) with

its amino acid sequence was determined using the VER-
IFY 3D program. Swiss PDB viewer 4.1.07 was used for
the energy minimization of the predicted AKT1 protein
along with its mutant form. The W80R model was fur-
ther subjected to structural analysis and verification ser-
ver to evaluate its quality, before and after energy
minimization. ProSA tool [36] was employed for the re-
finement and validation of the minimized structure to
check the native protein folding energy. The superim-
position of the proposed model of AKT1 protein along
with mutant form with its closest-structural homolog
was carried out using chimera 1.11 [37].

Selection and preparation of ligands
Natural compounds database containing more than
12,000 ligands were aimed to the AKT1 protein family
were downloaded from the Pubchem database [38] and
subjected to ligand preparation by ligprep wizard appli-
cation of the Maestro 9.3 [39]. Ligprep tool was used to
prepare the high quality of ligands, such as the addition
of hydrogen’s, conversion of 2D to 3D structures, cor-
rected bond angles and bond lengths, with lower energy
structure, stereochemistry’s, and ring conformation
followed by minimization in the optimized potential of
OPLS 2005 force field [40, 41]. Properties such as
ionization did not change and tautomers were not gen-
erated, specifically retained chiralities. Compounds were
selected based on the lowest energy.

Preparation of protein molecule and active site prediction
The W80R protein was modelled by using the protein
preparation wizard of Schrodinger Suite; by adding
hydrogen atoms, optimizing hydrogen bonds, and verify-
ing the protonation states of His, Gln, and Asn. Energy
minimization was carried out using constraint 0.3 Å
RMSD and OPLS 2005 force field with steepest descent
algorithm. The sitemap tool was used to identify binding
pockets of W80R protein [42].

Receptor grid generation
Receptor grid generation was done by the Glide applica-
tion [42]. The receptor grid for W80R was generated
using active site residues which were identified by Site-
map tool. Once the grid has been generated, the ligands
are docked to the protein (W80R) using Glide version
5.8 (Grid-based Ligand Docking with Energetics) dock-
ing protocol. The scaling factor (0.25) and partial charge
(1 Å) represent cut-offs of Vander Waals radius scaling.

Molecular docking
Docking is the popular method of molecular modelling
to build ligands into the active site of receptor molecule
by estimating energy for the ligand binding to the pro-
tein [43, 44]. The value of this energy determines the
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biological activity of the molecules i.e. the higher energy,
the more effective the drug based on the receptor will be
considered. However, the term scoring (score) is used
for calculation of binding energy by a ligand to a recep-
tor molecule rather ranks assigned to position of ligand
with their specific targets procedures were consistently
carried out using a preparation of protein of Schrodinger
and defining the grid on the active site of the protein.
The reliability of the molecular docking is significantly
affected by the accuracy of docking scores and the 3D
structure of the receptor [45].
GLIDE (Grid based ligand docking with energies)

molecular docking tool uses computational simulation
methods for evaluating particular poses and ligand flexi-
bility. GLIDE systematic method, a new approach for
rapid, accurate molecular docking and its output G-
score, is found to be an empirical scoring function, is a
combination of diversified attributes. Glide uses the
Emodel scoring function to select between protein-
ligand complexes of a given ligand and the Glide Score
function to rank-order compounds to separate com-
pounds that bind strongly (actives) from those that don’t
(inactives). G-score is calculated in Kcal/mol, encompass
ligand-protein interaction energies, hydrophobic interac-
tions, hydrogen bonds, internal energy, pi-pi stacking in-
teractions, root mean square deviation (RMSD), and
desolvation. GLIDE modules of the XP visualizes ana-
lysis of the specific ligand-protein interaction [46]. The
ligands were docked using Extra Precision mode (XP)
and conformers were evaluated using the Glide (G)
score. The G score is calculated using this formula as:

GScore¼a�vdWþb�CoulþLipoþHbondþMetalþBuryPþRotBþSite

where vdW denotes van der Waals energy, Coul denotes
Columb energy, Lipo denotes lipophilic contact, H-bond
indicates hydrogen bonding, Metal indicates metal-
binding, BuryP indicates penalty for buried polar groups,
RotB indicates penalty for freezing rotatable bonds, site
denotes polar interactions in the active site and a = 0.065
while b = 0.130 were the coefficients of vdW and Coul.
ADME properties studies Calculation of absorption,

distribution, metabolism, excretion, and toxicity
(ADME/T) properties was performed for best-docked
ligand molecules by QikProp software. This software
predicts various limiting factors such as QP log Po/w,
QPlog BB, SASA, FOSA, FISA, PISA, WPSA, volume,
donarHB, acceptorHB, dip^2/V, AC*DN*5, Caco, QlogS,
rotors, rule of 5, rule of 3, the overall percentage of hu-
man oral absorption, etc. [47]. Lipinski’s rule of five [48]
measures the drug-likeness for the prediction of a chem-
ical compound as an orally active drug based on bio-
logical compounds and pharmacological properties.

Analysis of cancer-associated mutants
The deleterious W80R mutations that are specific for
cancers were predicted using the FATHMM server
(http://fathmm.biocompute.org.uk/) [49] which allows
the distinct difference between cancer-promoting/driver
mutations and other germline polymorphisms. The gene
number identifiers (UniProt id) along with mutant form
as a text were provided as the input for the prediction.

Molecular alignment and 3D QSAR studies and validation
The key component of 3D QSAR analysis is the arrange-
ment of the molecules based on the scaffold they share
which generated using the training was set of 44 mo-
lecular poses with a grid spacing of 1 Å PLS (partial least
square) algorithm to establish the relationship between
biological activity and different structural features. The
training set was adjusted to 50%. Three models were
generated by Gaussian filed extension as Gaussian steric,
electrostatic, hydrophobic, hydrogen bond donor, hydro-
gen bond acceptor, and aromatic ring fields. CoMFA
and CoMSIA are the tools employed as independent var-
iables in PLS regression analysis. The best model was
chosen based on the criteria of statistical robustness and
visualized using contour map modules. The predictive
power and stable models were assessed using the leave
one odd (LOO) cross-validation method. The crucial as-
pects for the test set statistics include RMSE, Q2, SD,
R2, R2CV, R2scramble, stability, F, P, Q2, Pearson’s r
which indicates the predictive ability of the model. A
Scatter plot was generated in correlation with predicted
activity on the Y-axis and observed activity on the X-
axis of the data set model [50].

Contour maps visualisation
Representation of the fields as contours (surfaces) or as
color intensities of the fields on the grid can be displayed
in different styles. Based on the field type, the colors are
designed and field intensities are shown for one field at
a time. The fields with greater absolute values than the
cut-off were presented at the maximum brightness.

Molecular dynamics simulation
The simulation of protein-ligand complexes was imple-
mented by GROMACS 4.5.5(Groningen machine for
Chemical Simulations) software [51]. The complex with
the lowest binding energy was selected for molecular dy-
namics (MD) simulation. The ligand parameters were
analyzed using PRODRG online server [52] in the frame-
work of GROMACS force-field 43a. The ligand enzyme
complex was solvated at a simple point charge as well as
a water box under periodic boundary conditions using
1.0 nm distance protein to the box faces. The system
was then neutralized by Cl− or Na+ counter ions for the
W80R complex with ligand respectively. To perform
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energy minimization, the complex was equilibrated
under volume, constant number of particles, and
temperature condition for 100 ps at 300 k, followed by
100 ps. All the covalent bonds with hydrogen bonds
were considered using a linear constraint solver algo-
rithm. The electrostatic interactions were treated using
the particle mesh Ewald method [53]. Further MD simu-
lation studies were noted for 20 ns to check the accuracy
and stability of the ligand-protein complexes. The poten-
tial of each trajectory produced after MD simulations
were analyzed using g_rms, g_rmsf, and g_h bond of
GROMACS utilities [54] the root mean square deviation
(RMSD), the root mean square fluctuation (RMSF), with
hydrogen bonds formed between the ligand and protein
complex.

Results
Mutant W80R sequence analysis
The development of anticancer compounds with varie-
gated pharmacological effects becomes a very paramount
topic and hence main class of secondary metabolites,
both dietary and synthetic flavonoids have been sub-
jected to clinical trials [55]. Definite beneficial biological
activities of dietary flavonoids including antioxidants
[56] anticancer [57], and cardio-protective properties
[58] have been identified in a series of previous studies.
Flavonoids are known for their wide exposure to chemo-
preventive, chemotherapeutic activities, and the avail-
ability of the compound in plant sources for the human
diet in routine consumption [59].
The analysis of the mutant W80R protein sequence of

the AKT1 has 480 amino acid residue which plays a very
crucial role in metabolism, cell proliferation, cell sur-
vival, growth, and angiogenesis, was downloaded from
Uniprot with accession number (P31750). The amino
acids in the protein sequence of W80R were composed
of lysine, leucine, glutamic acid, and alanine. The Prot-
Param tool was used for the W80R protein sequence to
compute physio-chemical parameters such as molecular
weight of 5565.45 kD. The W80R had a pI (isoelectric
point) of 5.99 indicating its acidic nature (pI< 7.0) with

an aliphatic index (AI) (71.69). The protein volume is
occupied by aliphatic side chains such as lysine, leucine,
glutamic acid, and alanine. The instability index of
W80R measured 35.76 of the unstable nature. The grand
average of hydropathicity (GRAVY) of W80R protein
was lower (− 0.583), which proves its high affinity with
water. The comparison of statistical characteristics is
showing the differences among wild AKT1 and mutant
W80R using the ProtParam tool (Table 1). The compari-
son of sequence analysis of W80R mutant protein with
AKT1(wild) at nucleotide and protein level was same
with a slight difference, thus proving-T, C-G rich region,
and properties such as molecular weight, amino acid
composition, theoretical pI, aliphatic index, and grand
average of hydropathicity (GRAVY) were found in an ap-
propriate range of influencing the protein stability.

3D molecular modelling of W80R mutant protein
The 480 amino acid residue length of W80R protein was
subjected to BLASTp analysis against RCSB PDB to
identify the suitable template for comparative structural
modelling and functional prediction. The result of the
BLASTp search revealed a template (PDB id 3O96) of
high-level identity with the target sequence of AKT1.
The query coverage (100%) showed a high degree of
identity between two proteins (AKT1 and W80R) of 480
sequence length, and E value (2e-60) is the expected
value obtained by hits, percentage identity defines the
extent of two sequences, Modeller 9.13 has generated 5
models of W80R, among these the lowest score is con-
sidered as stable which is thermodynamically subjected
to further refinement. The lowest RMSD as 0.18 score
model was considered as the best one for further valid-
ation purposes [33]. Finally, three dimensional (3D)
structure of the selected protein using its template was
visualized by the PYMOL tool.

Model assessment and validation
The stability of the protein was constructed based on
the backbone of torsion angles psi and phi which were
evaluated by the PROCHECK server that computes the

Table 1 Comparison of primary sequence analysis using the ProtParam tool between AKT1 (wild) and W80R (mutant)

S.No Parameters AKT1 W80R

1 Molecular weight 5586.7kD 5565.4kD

2 pI 5.75 5.99

3 Aliphatic Index 71.69 71.69

4 Instability Index 35.47 35.76

5 GRAVY −0.575 −0.583

6 Atoms 7772 7776

7 Total number of Asp+Glu residues in a protein content 77 76

8 Total number of Arg + Lysresidues in a protein content 66 68
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amino acid residues in the existing zones of Ramachan-
dran plot analysis of W80R mutant forms (Table 2). The
information presented in Table 2 depicts the Ramachan-
dran plot through RAMPAGE server where W80R mu-
tant protein has 79.3% amino acids falls in the most
favored region with located major active binding sites,
while 13.8% in an allowed region and 6.9% residues in
the outlier region of the plot with lesser significance.
SAVES analysis was conducted to confirm the quality of
the protein model followed by ProSA, RMSD assessment
for a high-quality structural model for virtual screening.
The quality of the predicted model of AKT1 protein and
a W80R mutant was supported by a high ERRAT score
of 81.99 in an acceptable protein environment. The
VERIFY 3D results of W80R showed 81.88% of the resi-
dues with an average 3D-1D score > = 0.2, indicating the
stability of the model. ‘WHAT IF’ tool examines the
coarse packing quality, the model protein structure,
reflecting the acceptance of good quality. The reliability
of the W80R form was confirmed by ProSA (Fig. 1)
which achieved a Z score of − 7.92 kcal/mol compared
to the wild form AKT1 having a Z score − 7.2 kcal/mol,
wherein the energy is negative, reflects the best quality
of the model. The quality of the model was evaluated
through the comparison of predicted structure with ex-
perimentally determined structure followed by superim-
position and atoms RMSD assessment using Chimera
1.11, which proved that the predicted model is good and
quite similar to the wild protein.

Active site and score prediction
A proven algorithm for binding site identification and
evaluation of the drug ability of those sites marvels to
modify hit-compounds to enhance receptor complemen-
tarities. The active site was performed using a sitemap
tool to assess each site by calculating attributes such as
size, volume, amino acid exposure, hydrophobicity,
hydrophilicity, donor/acceptor ratio. The most reliable
score was obtained in the binding pockets of W80R. The
predicted amino acids in the active region were LEU156,
GLY157, GLU234, MET281, ASN279, GLU278, LYS276,
ASP274, THR291, ASP292, PHE293, GLY294, LEU295,
GLU298of site score for the selected model was 1.128,
drug ability score − 1.149 with Volume 384.486 and size
measured was 179 for further docking analysis.

Analysis of cancer-associated mutants
The mutation impact for the protein W80R was classi-
fied using the FATHMM server derived from the new
FATHMM-MKL algorithm. It distinguishes between
cancer-promoting/driver mutations and other germline
polymorphisms. This algorithm predicts the functional,
molecular, and phenotypic consequences of the missense
mutation of a functional protein using hidden Markov
models (HMMs), representing the alignment of homolo-
gous sequences and conserved protein domains with
“pathogenicity weights”, representing overall tolerance of
protein/domain to mutations [49]. The gene number
identifier (UniProt id) along with mutant form as a text
was provided as the input for the prediction based on
the FATHMM server predictions with a score − 1.12 re-
sponsible for benign cancer. The functional scores for
individual mutations were obtained from the
FATHMM-MKL server which falls in the range of 0–1
known as single p- values fall in the range of (0–1)
where the values below 0.5 are predicted as benign and
above 0.5 are deleterious.

Determination of ADME profile
Molecular properties of the selected compounds were
studied using Qikprop and chosen based on the Lipinski
rule of five which marks the most important activity in
drug discovery and development. Multifarious Insilco
techniques have been employed to measure the drug-
likeness for a compound based on numerous descriptors.
Calculation of absorption, distribution, metabolism, ex-
cretion, and toxicity (ADME/T) properties was predicted
for best-docked ligand molecules using Qikprop soft-
ware. Qikprop computes almost 20 physical descriptors
over a wide range of predicted properties unlike a
fragment-based approach, by screening compound li-
braries for hits and play a marvel optimization that can
be used to improve predictions by fitting to experimental
data and also to generate QSAR models. The detailed
analyses of chemical and molecular descriptors and also
solubility properties were tabulated in Table 3, 4, and 5.
The results of ADME properties are an important index
to check the clinical candidates have reached the re-
quired standard. It is revealed that compounds in the
table were ranked based on the potential drug proper-
ties. According to a previous study, ~ 40% of failures to
develop medicine in the development phase are due to

Table 2 Comparison of secondary structure using RAMPAGE server between AKT1and W80R mutants

S.No Protein Properties AKT1(wild) W80R(mutant)

1 Total amino acids 480 480

2 Number of residues in favoured region (−98.0% expected) 388 (81.2%) 379 (79.3%)

Number of residues in allowed region(−2.0% expected) 61 (12.8%) 66 (13.8%)

3 Number of residues in outlier region 29 (6.1%) 33 (6.9%)
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poor biopharmaceutical properties (pKa-dissociation
constant and bioavailability) [60]. The ADME as a deal
medicine has the following characteristics,hydrogen
bond donar< 5; hydrogen bond acceptor < 10; molecular
weight < 500 Da;lipid water partition coefficient < 5;
water solubility partition coefficient − 6.5 < logs< 0.5; and
polar surface area 7.0–20.

QSAR studies and validation
A dataset of 44 ligand compounds was chosen for statis-
tical studies and classified as the training set and test set
into 50% for suitable 3D QSAR model development. The
graphical interface allowed building dataset into training
and testing equally for 50% by generating a correlation
coefficient. The graph obtained for all/training models/
test models was observed in Fig. 2A. Molecular descrip-
tors (ligands) were divided into a training set and test
set (Table 6) with parameters such as phase QSAR,
phase activity, % extrapolation, predicted error and pre-
dicted activity. QSAR built model was generated based
on docking poses and substructure alignment was repre-
sented with standard deviation for the regression distrib-
uted over n-m-1 degrees of freedom(n ligands, m PLS
factors) as 10.7913, R2(the coefficient of determination)
gives 0.8226 means the model accounts for 82% of the
variance in the observed activity, which falls between 0
and 1, R2C yields 0.2055 for cross-validated where R2 is
obtained by leaving an N-out approach, R2scramble (R2

is regression or coefficient of determination) obtained as
0.4889 which computes the average value obtained using
scrambled activities of Fig. 2B. This parameter is

calculated from a series of models built using scrambled
activities. The lower values indicate that the model can-
not fit for random data while higher the value means
that the variable set can be fairly complete and allows
fitting anything. R2 value indicates the data set is over
fit. Larger the value, the larger the data occupancy. The
stability provides the degree for molecular fields that can
fit random data, however, statistics observed to be 0.379
for the model prediction of the changes obtained in the
training set composition. The descriptor F gives the ratio
of the model variance to the observed activity variance.
The model variance is calculated for the distributed data
over m degrees of freedom and the activity variance is
distributed over n-m-1 (n ligands, m PLS factors) hence
obtained value of 92.7 means indicates more significant
regression. Pearson descriptor measured 5.95e-09, where
the significance level treated as a ratio of Chi-squared
distributions. The smaller values indicate a greater de-
gree of confidence while a P value of 0.05 means F is sig-
nificant at a 95.6% level. RMSE- root mean square error
predictions for the test set were to be 22.02, Q^2for for
predicted activities with 0.2915. If the value becomes
negative, then the variance in the errors is larger than
the variance from the observed activity. Pearson-r corre-
lated with predicted activity, and observed activity ob-
served for test set with 0.7508. The test set was
determined within the maximum range of the training
set. The field values for the ligand were estimated out-
side the range found in the training set in percentages
was calculated under Extrapolation of the complete data
set.

Fig. 1 Protein structure analysis (ProSA) of the W80R (mutant) on the left side and AKT1(wild) on the right side. (A) The overall quality of the
W80R model represents a Z score of −7.9Kcal/mol (B) Overall quality of the wild protein AKT1 represents a Z score of − 7.2Kcal/mol
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Contour visualisation
The contour maps (Fig. 3) were used to illustrate the
fields required for biological activity. Field-based QSAR
interface creates electrostatic, hydrophobic, and steric

Table 3 Detailed analysis of ADME properties of ligands using
QIKPROP software

*SASA: total solvent accessible surface area in square angstroms using a probe
with a 1.4A radius; FISA: hydrophilic component of the SASA (SASA on N, O,
and H on heteroatom); FOSA: hydrophobic component of the SASA (saturated
carbon and attached hydrogen); CID ID: compound Id from
PubChem database.

Table 4 Detailed analysis of ADME properties of ligands using
QIKPROP software

*.Donor HB: it is the calculated number of hydrogen bonds that would be
donated by the solute to water molecules in an aqueous solution, values are
averages take over many configurations, so they can be non-integer; Acceptor
HB: it is estimated as the number of hydrogen bonds that would be accepted
by the solute from water molecules in aqueous solution; dip2/v: square of the
dipole moment divided by the molecular volume. This is the key term given in
Kirkwood-Onsager equation for the free energy described of solvation of a
dipole moment with volume V; AC*DN: index of cohesive interaction in solids;
Volume: total solvent-accessible volume in the cubic angstroms using a probe
with 1.4 A radius.
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fields for optimization and marvels discovery. The repre-
sented green contour indicates the bulky group in a
favourable region. The contour map depicts hydrophobi-
city in the solvent-accessible hydrophobic pocket steric
fields are considered as the most favourable regions with
a high Glide score. The obtained results have shown the
steric and Gaussian field fractions are much larger than
other fields suggesting most of the binding energy has
been contributed from hydrophobic interactions.

Molecular docking studies
Molecular docking is the paramount computational tool
to configure (Fig. 4) all the possible active conformations
of binding at the active site for the receptor molecule.
Before performing the docking protocol, the co-
crystallized ligand was re-docked into the crystal struc-
ture of the 4GV1 (AKT1) receptor molecule to evaluate
the reliability of the standard precision algorithm of the
Glide. A dataset of flavonoids family along with its struc-
tural analogs comprising 7000 ligands was selected.
Upon generation of Epik for suitable tautomeric states
per 16 for each ligand, 12,000 ligands were chosen en-
tirely as a whole set for virtual screening with W80R
mutant protein. The top three ligands with the best

binding energy were considered for further analysis (Fig.
4).
The major contribution is incorporation of interaction

energies of Couloumb and vdW between ligand and the
receptor. The wide disparities from the original inter-
action energies seem to be reduced greatly, although
charge- charge interactions were found to be favoured to
an extent. The coloumb-vdW energies used in Glide
score 2.5 employ these reductions in net charge except
in anionic ligand-metal interactions, for which glide uses
the full interaction energy.
Several hydrogen bond interactions were found in the

docking result. The top-scoring compound belongs to
CID-443637 was having lower binding energy with a
Glide score of − 9.63 Kcal/mol. The hydroxyl group of
LEU156, GLU234 and ASP274 forms hydrogen bond re-
vealing the strongest stability with the receptor mol-
ecule. The three hydrogen bond interactions provide the
guarantee for stable conformation of a binding ligand
molecule to protein structure which influences the activ-
ity of the ligand. The interaction with 1 pi ~ cation
LYS268 recognized as energetically significant [61] and
noncovalent binding interaction proves to exist in a
quite strong platform both in the gas phase and liquid

Table 5 Solubility prediction parameters for molecular descriptors

CID QPlogpC1 QPlogPW Qplogpoct QPlogPw QPlogPo QPlogS ClQPlogS QPlogHER QPPCaco QPPMDCK QPlogKp

5,318,278.0 27.1 6.7 11.8 5.4 2.9 −4.5 −3.0 − 4.1 1992.1 1042.1 − 2.8

5,469,422.0 22.7 5.0 8.7 5.1 1.8 −2.8 −1.9 − 4.0 3923.3 2167.8 −2.3

5,469,423.0 25.8 6.3 14.3 10.0 1.5 −3.3 −2.2 − 3.9 3923.0 2167.6 −2.3

5,907,705.0 25.8 6.3 13.7 10.0 1.5 −3.3 −2.2 −3.9 3923.1 2167.7 −2.3

443,637.0 30.4 6.9 10.9 5.1 3.1 −5.8 −2.6 −5.4 2297.1 1215.5 −2.8

44,264,122.0 27.4 6.7 11.7 5.5 3.0 −4.8 − 3.0 − 4.5 1992.2 1042.1 −2.8

71,424,203.0 30.4 7.3 15.4 10.2 2.1 −4.3 − 2.2 − 4.4 4024.7 2228.4 −2.3

10,852,057.0 24.6 5.5 10.6 5.1 2.1 −3.2 −2.3 −4.0 3923.3 2167.8 −2.3

14,407,192.0 25.4 6.2 10.8 5.4 2.6 −4.3 −2.6 −4.3 1853.1 963.6 −2.8

19,792,482.0 29.5 7.5 18.3 5.3 3.3 −5.1 − 3.4 − 4.6 3892.8 10,000.0 −2.3

19,792,563.0 29.7 6.6 11.1 5.3 2.9 −4.6 −2.4 − 4.6 3892.8 2149.6 −2.3

22,321,203.0 25.1 6.3 11.1 5.1 2.7 −4.5 −2.9 −4.6 1338.3 677.9 −3.0

24,952,793.0 30.3 −7.7 13.7 8.4 2.4 −4.9 −3.3 −18.3 1409.6 717.0 −2.7

24,952,797.0 26.6 −9.3 22.7 7.5 2.3 −4.3 −3.9 −17.7 1441.8 2759.8 −3.1

24,966,389.0 29.5 −8.5 13.8 7.6 2.4 −4.9 −2.9 −17.7 1441.8 734.7 −3.1

44,538,447.0 27.1 −8.6 14.0 7.6 2.4 −4.8 −3.4 −17.7 1387.8 2852.3 −3.1

44,560,954.0 24.9 −10.9 10.4 5.4 2.5 −4.0 −2.6 −17.7 1853.1 963.7 −2.8

44,610,342.0 32.4 −7.3 14.7 7.7 2.8 −5.8 −2.5 −17.7 1436.1 731.6 −3.1

53,693,682.0 26.1 −9.8 11.0 5.4 2.7 −4.8 −2.7 −17.7 2084.0 1094.1 −2.739

*QPlogPoct: predictedoctanol/gas partition coefficient;QPlogPw:predicted water/gas partition coefficient;QPlogPo/w: predicted octanol/water partition
coefficient;ClQPlogS: conformation –independent predicted aqueous solubility, logs. S in mol dm− 3 is the concentration of the solute in a saturated solution that
is in equilibrium with the crystalline solid; QPlogHERG: predicted IC 50value for blockage of HERG K+ channels;QPPCaCo: predicted apparent CaCo-2 cell
permeability in nm/sec; Caco-2 cells are a model for the gut blood barrier;QPlogKp: predicted skin permeability, logKp; QPlogS: Predicted aqueous solubility, log
S, S in mol dm− 3 is the concentration of solute in the saturated solution that is in equilibrium with the crystalline solid; QPPMDCK: Predicted apparent MDCK cell
permeability in nm/sec, MDCK cells are considered to be a good mimic for the blood- barrier;QPlogpCl:Predicted hexadecane/gas partition coefficient
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media [62] which is a special hydrophobic interaction
having a cationic side chain amino acid, indicating that
the geometry is biased towards aromatic amino acid, one
that experiences a favorable pi~ cation interaction [63]
having IUPAC name 2-(3,4-dihydroxy phenyl)-3,4 –
dihydro-2H-chromene-5,7-diol of C15H14O5 (Fig. 5).
The second highest molecule of 44264122 has a binding
energy of -9.43 kcal/mol with hydrophobic contacts with
residues such as THR291, ILE290, THR211 and oxy bond
with LYS268 having IUPAC name 3,4 Difluoro-8,9-dihy-
droxbenzo[c] chromen-6-one of C13H6F2O4 (Fig. 6).
The third compound CID 71424203 has the binding en-
ergy of − 9.36 kcal/mol forming hydrogen bond interac-
tions with amino acid residues THR211, SER215 aromatic
amino acid residue, and TYR474 of 1 pi~pi stacking
interaction. The residue TRP80 between two aromatic

amino acids has a separation of − 3.35A (vDw) having
IUPAC name 2,5,7–trihydroxy-3-(4-hydroxyphenyl)-2,3-
dihydrochromen-4-one of C13H12O4 (Fig. 7). After the
comparison of all three models, the compound CID with
443,637 with the lowest energy is chosen for further mo-
lecular dynamics simulation studies.
The lower Glide score represents the most and highest

favorable binding affinity. Hydrogen bond interactions,
pi-interactions, pi staking of the best poses were visual-
ized and interpreted using XP visualizer with descriptors
(Table 7) in ascending order. It rewards the topmost li-
gands for hydrogen bond with lengths and angles deviat-
ing significantly from “ideal” hydrogen-bond interaction
(1.65A H-A distance,180 D-H A angle) [47]. The Pho-
bEn measures hydrophobic enclosure reward on the pro-
tein. The lipophilic EvdW is the term for the

Fig. 2 (A) Scatter plot diagram between actual activity and predicted activity showing QSAR results of all molecular descriptors (B) Activity
predicted between only training set chemical descriptors(C) Predicted activity between test set of chemical descriptor
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hydrophobic region that lies within receptor and Ligand
proximity. For the obtained data, PiCat, ClBr, PhobEnPa,
penalties, HB penal, exposed penal, zprot remained at
zero, whereas other properties of descriptors were exhib-
ited accordingly.

Molecular dynamics simulation
MD simulations were performed to W80R protein-
ligand complex with the least binding energy (Fig. 8A).
The results of MD trajectories were evaluated by the
root mean square deviation (RMSD) and root mean
square fluctuation (RMSF) plot which could provide sig-
nificant insights into understanding structural changes
in atomic details. The RMSD is a significant parameter
to analyze the equilibrium in MD trajectories, which is
estimated for backbone atoms of W80R protein and
taxifolin ligand complex. For the W80R protein com-
plex, the fluctuations were raised about 0.3 to 0.4 nm
during the initial stage (Fig. 8A). Clear and noticeable
deviations were observed in the residues of RMSD values
with an increase in time from 200 ps to 600 ps. The ma-
jority of residues resulted to attain a stable state at 600
psbetween 0.45 nm to 0.5 nm. At the same time,
W80Rprotein-ligand complex fluctuated from 700 ps to
900 ps at 0.4 nm and remained stable between 0.4 nm to
0.45 nm until the end of the simulation [65].
RMSF results were obtained by considering the aver-

age of all backbone residues of atoms to inspect the local
variations of protein flexibility (Fig. 8B). The fluctuations
observed above have an important role in protein com-
plex flexibility and thus affect protein-ligand activity and
stability. The high RMSF value shows more flexibility
with a maximum level of fluctuation in the residue posi-
tions of 355 and 405 at 6 Å of the backbone structure,
while the minimum RMSF shows very limited move-
ments. The RMSF graph for the W80R-ligand complex
was shown in Fig. 8B. The W80R-ligand complex has
attained the amino acid residues at 455 and 500 also
shows a fluctuation at 5 Å of RMSF. While at positions
305 and 355 at 4Å indicate a similar steep-up graph at 5
Å.The amino acid residues between 15, 55, and 105, 155,
have shown medial deviation at 3 Å.
To determine the residue interaction network,

RING2.0 software identifies all types of non-covalent in-
teractions in atomic levels which have wide different en-
ergies and lengths. The output has been visualized in
two different ways (i) interaction network which has
been visualized using different labels and (ii) structural
contacts using RING_viz-script for pymol (Fig. 9). The
applications of RING 2.0 have a growth in protein fold-
ing patterns, domain-domain communication and cata-
lytic activity, inter-intrachain interactions that combine
both solvent and ligand atoms. Residue interaction net-
work (RIN) describes the single amino acid as nodes and

Table 6 List of statistical analysis generated using field-based
QSAR
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Fig. 3 The CoMFA steric field with 2 Å grid spacing is displayed for the compound CID: 5482167, which depicts hydrophobicity via contour
mapping and demonstrates the C7 substituted group was in the solvent accessible hydrophobic pocket. Steric fields are considered as most
favorable regions with high glide score

Fig. 4 A docked complex of W80R protein in ribbon model with inhibitor CID ID 443637 (Taxifolin) at an active site of binding pocket with
XP score − 9.63 kcal/mol
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physicochemical properties as edges including covalent
and non-covalent bonds. RIN has become common
practice to explore the complexity inherent in macro-
molecular systems [66].

Validation of marvel compound with AKT1-inhibitors
This study has compared the marvel compound (taxifo-
lin) with co crystallised protein-ligand (inhibitors) com-
plex. Among the proposed models for AKT1 protein,
the best and high 3D resolution of protein 4GV1 pdb
format is considered for better understanding the speci-
ficity and potency of the inhibitor when compared other
authentic protein ligands further evaluation. This cocrys-
talised pdb molecule is subjected to auto dock program-
ming software for evaluating binding energy, RMSD
values and Ki (nm). The ligands were choosen and
downloaded from RSCB database. The Auto dock pro-
gram 4.2 [67] has been employed for this purpose which
utilizes a semi- empirical free energy. The force field is
based on thermodynamic model which takes into ac-
count of intermolecular energies. The difference be-
tween bound and unbound states of ligands associated
with their calculations of binding energies. However, the
force field employs the simple method of utilizing

atomic charges. The force field assesses the binding en-
ergy of two or more water molecules by pair-wise atom
interaction energy along with empirical approach to
evaluate the surrounding water molecule. The results
depicted that obtained marvel compound shown higher
binding energy than co crystallized ligands. Therefore, it
is redocked to check for the validation of model. The
docking position accuracy is indicated by the shift in the
position of the accuracy of the native ligand from its
position in the respective complex of the co-crystallized
protein and ligand. The results depicted that the high
resolution protein structure 4GV1of AKT1 is used for
redocking purpose with cocorysallised ligands. 4GV1
protein structure has also used check the obtained marvel
compound (taxifolin). The validation studies confirmed
the highest binding energy with taxifolin about − 13.94
kcal/mol and reference RMSD as 27.43 and Ki in (nm) as
60. 57All the other inhibitors were redocked and checked
for RMSD and binding energy and results obtained as
shown in the table. This provides the strong evidence that
natural flavonoid has high binding energy while other syn-
thetic inhibitors such as CQU, SMH, SM9 fallen between
− 10.54 kcal/mol to − 9.33 kcal/mol range of energies. The
detailed obtained values are given in the Table 8.

Fig. 5 Representation of W80R receptor molecule with CID ID-443637 as a ligand interaction with protein residues LEU156, GLU234, and ASP274 of
hydroxyl group (−OH) and 1 pi-cation interaction with LYS276 with noticeable solvent exposure sites observed at some residue locations with
highest Glide XP score of −9.63Kcal/ mol
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Reference RMSD means the difference rms between
the taken structure and the input structure. The most
proper way of evaluate geometry is to measure the root
means square deviation (RMSD) of a ligand from its ref-
erence position after the superimposition of the receptor
molecule. It is usually considered best < 1.5–2.0 a for
good accuracy

Discussion
The enigmatic in ovarian cancer is that in nearly 75% of
patients, cancer does recurse during the first two years
and failto respond to available therapeutic drugs due to
acquired resistance [68, 69] in addition to late diagnosis
in advanced clinical stages and metastasis within the
peritoneal cavity [70]. Therefore, there is an immediate
need to design novel drugs to deal with the existing
problem. Numerous studies since a decade have re-
ported that Flavonoids as candidates are meant to block,
retard, or reverse the progression of carcinogenesis [71].
Although various studies have been carried out using fla-
vonoids the anticancer mechanisms have not been de-
fined clearly. However, it was found that the flavonoids
such as quercetin and silymarin induce anti-cancer
mechanisms in the ovarian cancer cell [72, 73]. Conse-
quently, the effects of apigenin, luteolin, and myricetin
on ovarian cancer have to uncover the link between po-
tential mechanisms underlying their anticancer effects.

Quercetin inhibits cell proliferation of ovarian cancer
cell line of SKOV-3 which correlated with findings of
(Yi, 2014) caused on concentration and time-dependent
manner [74] showed to inhibit UVB induced skin cancer
cell proliferation and induce apoptosis in vivo models
upon apigenin treatment. Taxifolin in-vitro studies have
been efficient especially in anticancer, antimicrobial ac-
tivities but leave a strong gap in the invivo studies at the
root level.
The marvel compound in the current study was recog-

nized as taxifolin which has potent to exhibit anti-cancer
effects on U2OS and Saos-2 in osteosarcoma cell lines
by inhibiting the proliferation and disrupting colony for-
mation. In vivo studies exhibit intraperitoneal adminis-
tration in nude mice bearing U2OS xenograft that resists
tumor growth. This potency is known to arrest the G1
phase of the cell cycle in U2OS and Saos-2 cell lines.
Taxifolin has known to function by inhibiting colon car-
cinogenesis by NF-kB mediated Wnt/b catenin signalling
through upregulation of Nrf2 pathway while downregu-
lation in genes such as TNF-α, COX-2, β-catenin, and
cyclin-D1 was inhibited by NF-kB and Wnt signalling
pathway [75]. It is also reported that injection of taxifo-
lin has reduced the proliferative activity on Wistar rats
with benign prostatic hyperplasia [76]. Taxifolin also has
an excellent report on antiangiogenic effect by new
blood vessels and its branches per area of chick

Fig. 6 Representation of W80R protein-inhibitor complex of CID 44264122 with three hydrogen bonds of a hydroxyl group (−OH) interacting
with THR211, ILE290, and THR291 and oxy bond with residue LYS268 with Glide XP score: −9.43Kcal/mol
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chorioallantoic membrane assay which is inhibited by
tube formation on matrigelmatrix in the human umbil-
ical vein of endothelial cells which were evaluated
against tachyzoites in vitro with IC50 of 1.39 μg/mL(p ≤
0.05) along with pyrimethamine. Taxifolin has known to
express an anti-proliferative effect on cancer cell types
by inhibiting cell lipogenesis and inhibits the fatty acid
synthesis in cancer cell lines which is able to prevent the
growth of cancer cells [77].
An extensive animal (rat) study of antioxidant activity

on taxifolin acid has shown the decreased lipid peroxida-
tion in the serum and liver levels. The presence of OH
groups at position 5th and 7th together with 4-OXO
function in the A and C rings were meant for scavenging
effect while the O-dihydroxy group in the B ring pro-
vided stability [78]. Consequently,In vivo studies on taxi-
folin induced in apoptosis of HCT116 and HT 29 cells
revealed PARP1 overexpression is responsible for ovar-
ian cancer. AKT and catenin proved that down-
regulated expression by taxifolin on HCT 116 and HT
29 cells demonstrates a decline in p-AKT and catenin in
a dose of 40 μM against DMSO altering in the G2 cell
cycle and its regulators [79]. The expression levels of
AKT, SKP-2, v-mc avian myelocytomatosis viral onco-
gene homolog(c-myc) and P-SER473, have reduced activ-
ity on AKT gene by taxifolin [80]. Although the above-

mentioned experimental outcomes have contributed to
diversified pharmacological activities with AKT1 protein,
we still lack the detailed and molecular changeswrt to
the W80R mutant protein of the AKT1 family. Conse-
quently, the marginal overview of the molecular mech-
anism and atomic level with W80R mutation has aimed
to identify hits for optimization from large data set of
compounds from the PubChem database screening of
flavonoids in parallel to W80R mutant protein of AKT1
targeting ovarian cancer. Table 1 for the receptor mol-
ecule W80R of 480 amino acid sequence provides de-
tailed knowledge about the stability of protein using
Protoparam tools of Expasy server. The extensive evalu-
ation of the W80R sequence at the nucleotide level re-
veals its density, while other parameters such as A-T, C-
G rich region, molecular weight, amino acid compos-
ition, theoretical pI, aliphatic index, instability index, and
GRAVY significantly stand up for stability factor. The
most favored region by RAMPAGE server was assessed
to be 79.3% (Table 2) with active site binding. Further-
more, the reliability of the protein model has been
assessed by 3D or homology modelling. Therefore, the
Generation of 3D protein structure from sequence infor-
mation, in the absence of experimentally determined
structures in protein data bank through computational
approaches has become the topmost priority in the

Fig. 7 Representation of W80R receptor molecule with inhibitor at the active site showing protein-ligand hydrogen bond interaction with
residues as TYR474, SER215, THR211, with 1 pi-pi interaction at TRP80 residue, and 1 pi-cationic interaction bonding with LYS265 with
G score − 9.36Kcal/mol
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scientific community based on structural biology re-
search for several decades [81, 82]. The protein was
henceforth evaluated with SAVES server (structural

analysis and verification) for quality check, structural re-
finement through energy minimization in lowest energy
state in its stable conformation, followed by ProSA (Fig.

Table 7 Top-ranked hit compounds of docking with protein W80R obtained using XP visualize

*G Score-total G score along with the sum of XP terms(G score = a*vdW + b*Coul + Lipo + Hbond +Metal + BuryP + RotB + Site, where vdW is van der Waals
energy, Coloumb energy, Lipo is lipophilic contact, Hbond is hydrogen bonding, Metal, is metal-binding, BuryPis penalty for buried polar groups, RotBis penalty
for freezing rotatable bonds, the site is polar interactions in the active site and a = 0.065 while b = 0.130 were the coefficients of vdW and Coul
Dock score: Vanderwaals + Coulombic + HBonds represent the potentiality of bonding. In simple rigid systems, the ligand is searched in a 6 dimensional
rotational or translational space to fit in the binding site, which can serve as a marvel compound for drug design [64]. The lipophilic term is derived from the
hydrophobic grid potential and the fraction of the total protein-ligand vdWenergy, PhobEn- can be as hydrophobic enclosure reward for the penalty for ligands
with large hydrophobic contacts and low hydrogenbond scores phobic penal for the penalty for exposed hydrophobic ligand groups, Rot Penal for the rotatable
bond penalty.
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1) and superimposition analysis with experimentally de-
termined template structure as well as atoms and RMSD
assessment to obtained a high-quality structural model
for virtual screening [83, 84]. The predicted score for
the 3D homology model of RMSD for the W80R protein
was 0.18, the model was considered as the best one for
further validation purposes.3D QSAR studies have been
performed with structural similarity to predict the un-
known/untested ligands for better potency by correlating
mathematical and statistical values. QSAR models can
prioritize ideas in virtual screening as well in the

optimization of marvel compounds. Thus it has gained
acceptance in in-silco drug discovery. The scatter plot
QSAR tool (Fig. 2) assessed the molecular fields for the
compounds which estimate the stability and establish
statistical value to be 0.379 predicting the changes ob-
tained in the training set composition with 92.7 mea-
sured higher F indicates more statistical significant
regression. The dataset of 44 ligands was classified into
test and training models randomly with combined math-
ematical and statistical approaches for the drug candi-
date represents phase activity of 358.477% extrapolated

Fig. 8 (A) Root mean square deviation (RMSD) of the C-alpha backbone of the W80R protein complex and ligand taxifolin (X-axis time scale in ps
and Y-axis in RMSD in nm). (B) Root mean square fluctuation (RMSF) for C-alpha backbone atom of a W80R protein complex with ligand taxifolin
(X-axis shows amino acid residue number and Y-axis shows RMSF in nm)
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for 0.458 with the predicted activity of 333.692 and pre-
dicted error of − 24.7856 which was a good combination
as a marvel compound. R2 (Coefficient of determination)
value measured to be 0.822 which means the obtained
model accounts for 82.2% of the variance for the ob-
served activity, while standard R2 falls between 0 and 1
always (Table 6). The increase in a correlation coeffi-
cient(R^2) as an increase in the number of PLS factors,
with the decrease in values of standard deviation (SD)
and the increase in the number of variables, allows the
user to reduce the error of the fit model. Consequently,
the stability tends to increase to 3 factors, and then de-
crease. Here, the 3–3-model predictions were the least
sensitive to the training set composition based on leave
1- out tests. But for the 4 or above factors, the R^2 lar-
ger values than stability indicates the over-fit begins at
a4 factor. Of the complete training set data, the descrip-
tor Stability indicates the model sensitivity while larger
R 2 indicates the over-fit data set. Therefore, it is con-
cluded that obtained data holds quite good for marvel
compounds statistically. As per Lipinski’s rule of five, a
drug is a good molecule if it possesses ADME (absorp-
tion, distribution, metabolism, and excretion) properties
[48]. All the physicochemical properties and drug-
likeness were listed in Tables 3, 4, and 5 consequently; it
becomes easy for the marvel compound to enter the
mammalian cell to interact with proteins and regulating
gene expression in metabolic pathways. The top 10 hits

obtained by molecular docking were further docked into
the active binding sites of protein using a sitemap tool of
above score 1 and grid generation followed by XP proto-
col (Table 7). Neverthless, a contour map is one such
tool used in the present study to determine favorable re-
gions based on field-based QSAR which depends on
steric, electrostatic, hydrophobicity in solvent-accessible
pockets based on least binding energy. This application
plays a vital role in combination therapies of multi-drug-
resistant conditions as well as in drug discovery.
The evaluated hydrophobicity gives an accurate check

for the drug-ability of a compound (Fig. 3). Sitemap tool
treats entire protein to locate binding sites whose size,
the extent of solvent exposure is assessed based on scor-
ing function by ranks. Active sites are ranked based on
ligand propensity of binding measured by their ability to
bind tightly for passively absorbed small molecules.
Among the predicted combinations, active site amino
acid residues of site score 1.128, drug-ability score −
1.149, volume 384.486, and size 179 (Fig. 4) were taken
for further analysis. Taxifolin holds good interactions
with the binding domain of W80R, highest Glide score
of − 9.63 kcal/mol with O-H of GLU234 and H bond
LEU156 and ASP274 amino acid residues and one pi-
cation interaction and one hydrophobic bond with
LYS276 (Fig. 5). The marvel molecule satisfied all the sur-
face area calculations using QIKPROP tool of SASA,
FISA, FOSA, PSAand partition coefficient of Qplogpoct,

Fig. 9 Visualisation of the residual network of a W80R protein complex
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Table 8 Validation of 4GV1 receptor with co crystallised inhibitors with the obtained marvel compound
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QPlogPw, QPlogPo, QPlogS, ClQPlog, QPlogHER,
QPPCaco, QPPMDCK, QPlogKp, wherefore, this inhibitor
of the PI3K/AKT pathway has shown diverse aptitudes for
anticancer activity in both preclinical and clinical experi-
mental values and also supported through in-silico analysis.
The reports by the administration of taxifolin in colo-

rectal cancer cell lines and in the HCT 116 xenograft
mouse model had shown excellent antitumor activity.
The studies proved that the taxifolin hindered the
mRNA expression of β-catenin thus compiling anti-
proliferative activity which was arbitrated by PI3K/AKT
signal by jamming Wnt/ β –catenin signaling transduc-
tion through hampering the β expression [79]. The elu-
cidation of suppression by taxifolin on nuclear factor-kB,
C-Fos, and mitogen-activated protein kinase also de-
creased osteoclast specific gene expression including
Trap, Mmp-9, Cathepsin K, C-Fos, Nfatc1, and Rank;
taxifolin osteoclastogenesis via regulation of many
RANKL signaling pathways was also confirmed [85].
Taken together, these studies demonstrated that Wnt/
catenin pathway plays a crucial role in ovarian cancer
development and this idea also laid a strong platform for
the development of targeted curatives.
CID- 44264122 with three hydrogen bonds of a hy-

droxyl group (−OH) interacting with THR291, ILE290,
and THR211 where ILE290 forms oxy bond with residue
LYS268 (Fig. 6) with Glide XP score − 9.43Kcal/mol.
CID-71424203 forms the hydrogen bond interactions
with residues of TYR474, SER215, THR211, with 1 pi-pi in-
teractions at TRP80 residue, and 1 pi-cationic interaction
bonding with LYS265 with G score − 9.36 Kcal/mol
showed good hydrophobic interactions (Fig. 7). The mo-
lecular dynamics simulation was performed to obtain
the lowest error and data loss. The fluctuations in rela-
tive positions of atoms in protein-ligand complex explain
the structural stability (RMSD) at 0.45 nm to 0.50 nm
between 600 to 800 ps (Fig. 8A). The RMSF has shown a
steep up graph at 5A with a slight medial deviation and
not much structural change in protein cavity was ob-
served [86, 87] (Fig. 8B). Finally, the high resolution re-
ceptor molecule 4GV1 is used for validation purpose
and estimated binding energy for the marvel compound
as − 13.94 Kcal/mol after redocking. This study sup-
ported strong evidence against other synthetic inhibitors
found in the database for AKT1 molecule.
Residue interaction networks (RINs) consider single

amino acids as nodes and physio-chemical interactions
as edges (Fig. 9) representing the protein structure as
RINs have become common practice to explore the
complexity inherent in macromolecular systems. Hence-
forth, the taxifolin has been suggested as a drug for
human use in clinical trials.
Above all, assessing protein-ligand binding affinity has

become the main challenge during early stages of drug

discovery. Machine learning approach has been intro-
duced in contributing to this type of prediction by two
approaches. By exploring the experimental structures
with binding affinity and thermodynamic data accessed
using BindingDb, Binding MOAD, and PDBbind with
open sources like SAnDRes and Taba, while the second
method protein ligand docking simulations. Therefore
this combination has outruled classical scoring functions
with high predictive performance.

Conclusions
The mutant forms of the amino acid were found to
induce pathological outcomes disrupting the native
conformation of a protein. The W80R mutation in the
PH domain of AKT1 had been reported to cause ovarian
cancer by in-vitro studies and recorded in the Cancer
genome database. The clinical significance of W80R in
ovarian cancer and synthetic drugs used has laid as the
platform for this study. Therefore, the modelling of
W80R protein has been made for the first time. To
examine the detailed molecular mechanism of W80R,
we conducted molecular docking along with dynamic
simulation studies to understand the stability of the
mutant structure, which is known to cause a damaging
effect of the mutation.
Furthermore, a rise in RMSD values for stability in

trajectory and conformational drifts were observed in
W80R protein. The expected result supported the
molecular cause in a mutant form which resulted in a gain
of ovarian cancer. However, experimental evaluation or
in vivo studies is recommended for further validation.
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