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Abstract 

Objective Chlorine is a chemical threat agent that can be harmful to humans. Inhalation of high levels of chlorine 
can lead to acute lung injury (ALI). Currently, there is no satisfactory treatment, and effective antidote is urgently 
needed. Pentoxifylline (PTX), a methylxanthine derivative and nonspecific phosphodiesterase inhibitor, is widely used 
for the treatment of vascular disorders. The present study was aimed to investigate the inhibitory effects of PTX on 
chlorine‑induced ALI in rats.

Methods Adult male Sprague‑Dawley rats were exposed to 400 ppm  Cl2 for 5 min. The histopathological exami‑
nation was carried out and intracellular reactive oxygen species (ROS) levels were measured by the confocal laser 
scanning system. Subsequently, to evaluate the effect of PTX, a dose of 100 mg/kg was administered. The activities of 
superoxide dismutase (SOD) and the contents of malondialdehyde (MDA), glutathione (GSH), oxidized glutathione 
(GSSG) and lactate dehydrogenase (LDH) were determined by using commercial kits according to the manufacturer’s 
instructions. Western blot assay was used to detect the protein expressions of SOD1, SOD2,  catalase (CAT), hypoxia‑
inducible factor (HIF)‑1α, vascular endothelial growth factor (VEGF), occludin, E‑cadherin, bcl‑xl, LC 3, Beclin 1, PTEN‑
induced putative kinase 1 (PINK 1) and Parkin.

Results The histopathological examination demonstrated that chlorine could destroy the lung structure with hemor‑
rhage, alveolar collapse, and inflammatory infiltration. ROS accumulation was significantly higher in the lungs of rats 
suffering from inhaling chlorine (P<0.05). PTX markedly reduced concentrations of MAD and GSSG, while increased 
GSH (P<0.05). The protein expression levels of SOD1 and CAT also decreased (P<0.05). Furthermore, the activity of LDH 
in rats treated with PTX was significantly decreased compared to those of non‑treated group (P<0.05). Additionally, 
the results also showed that PTX exerted an inhibition effect on protein expressions of HIF‑1α, VEGF and occludin, and 
increased the level of E‑cadherin (P<0.05). While the up‑regulation of Beclin 1, LC 3II/I, Bcl‑xl, and Parkin both in the 
lung tissues and mitochondria, were found in PTX treated rats (P<0.05). The other protein levels were decreased when 
treated with PTX (P<0.05).
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Conclusion PTX could ameliorate chlorine‑induced lung injury via inhibition effects on oxidative stress, hypoxia and 
autophagy, thus suggesting that PTX could serve as a potential therapeutic approach for ALI.

Keywords Chlorine, Pentoxifylline, Oxidative stress, Hypoxia, Autophagy

Introduction
Chlorine, as a respiratory irritant, is widely used in 
numerous industrial processes, such as plastics, synthetic 
fibers, dyes, pesticides, and pharmaceutical manufactur-
ing [1–3]. Injuries due to chlorine exposure are usually 
the result of accidents at swimming pools and the mix-
ing of household agents [4]. Moreover, as a traditional 
chemical weapon, chlorine is still considered a terrorist 
threat [5–7]. In World War I, German troops released 
more than 150 tons of chlorine on April 22, 1915, in Ieper 
of Belgium. This attack killed up to 5000 and caused inju-
ries on both sides [8]. No matter accidental or deliberate, 
the release of chlorine poses a significant threat to public 
health [9–11]. Low concentration chlorine acts as an eye 
and oral mucous membrane irritant [12], but at the high 
level, it may induce damage to the lung, even resulting 
in acute lung injury (ALI) and acute respiratory distress 
syndrome (ARDS). Although there have been a number 
of therapeutic interventions recognized over the past 
couple of years, there is still no specific antidote against 
chlorine poisoning [13]. Searching for novel drugs 
remains urgently.

Reactive oxygen (ROS) is known to contribute to 
the pathogenesis of ALI/ARDS, which may cause the 
endothelial and epithelial barrier dysfunctions [14, 15]. 
Through upregulating the expression of adhesion mol-
ecules, ROS may amplify the tissue damage and pul-
monary edema. In a rats model of LPS-induced ALI, 
Duan et al. found that inhibited ROS might decrease the 
expression of adhesion molecules (ICAM-1 and VCAM-
1), then attenuated ALI [16].

Hypoxemia is one of the main features of ALI, which 
is predominantly governed by hypoxia-inducible factor 
(HIF) [17]. HIF-1 is an oxygen-dependent transcriptional 
activator that is widely expressed in tissue during hypoxia 
[18]. HIF-1α, the oxygen-regulated subunit of HIF-1, has 
been identified to play an important pathophysiological 
role in maintaining oxygen homeostasis. Under normal 
conditions, HIF-1α is degraded by ubiquitin-dependent 
proteasomal. When under hypoxia, the HIF-1α subunit 
is stabilized and accumulates in the nucleus, and then 
regulates diverse processes [19]. Moreover, HIF-1 binds 
to hypoxia-response elements and initiates transcrip-
tion of various hypoxia-adaptive genes, such as vascular 
endothelial growth factor (VEGF). As the most potent 
endothelial specific mitogen, VEGF recruits endothelial 
cell into hypoxic foci to regulate its function [20]. Our 

group previously reported that HIF-1α and VEGF levels 
increased in rat lung tissue after phosgene exposure [21, 
22]. Li et  al. showed that emodin alleviated pulmonary 
inflammation in rats with LPS-induced ALI by inhibiting 
the mTOR/HIF-1α/VEGF signaling pathway [23]. E-cad-
herin is a transmembrane glycoprotein which presents on 
the lateral surfaces of epithelial cells and functions as a 
cell adhesion [24]. Loss of E-cadherin is associated with 
lung diseases such as asthma and chronic obstructive 
pulmonary disease [25]. HIF-1α signaling pathway may 
play a key role in the development of ALI. However, the 
effects of PTX on hypoxia signaling pathway still need to 
be explored.

Autophagy is a process of cell self-renewal that is 
dependent on the degradation of the cytoplasmic pro-
teins or organelles of lysosomes [26]. Extensive work has 
been performed to confirm that autophagy is involved in 
the occurrence and development of ALI [27]. In the early 
stages (1 h and 2 h) of ALI induced by LPS, autophagy 
reached a peak at 2 h. As the ALI process progressed, 
autophagy decreased in a time-dependently manner 
[28]. The role of autophagy in ALI is still unclear. In cecal 
ligation and puncture (CLP)-induced septic mice, the 
emergence of autophagy alleviated the cytokine exces-
sive release and lung injury, describing a protective role 
[29]. In  vivo, autophagy aggravated oxidative stress in 
alveolar epithelial cells in H9N2 influenza virus infection 
[30]. However, there is no direct evidence for the effect of 
autophagy on chlorine-induced ALI.

Historically, the nonselective phosphodiesterase inhibi-
tor pentoxifylline (PTX) is reported for clinical use since 
1972 and the LD50 oral dosage in rats is 1170 mg/kg. 
Because there appears no serious drug–drug interac-
tion, PTX can be used easily in vascular disease, includ-
ing peripheral vascular disease, cerebrovascular disease, 
and a number of other conditions involving a defective 
regional microcirculation [31]. These beneficial effects 
are thought to be due to its anti-inflammatory proper-
ties by inhibiting the production of tumor necrosis fac-
tors [32]. More importantly, it is widely reported that 
PTX has been shown to inhibit liver ischemia/reperfu-
sion injury, abdominal compartment syndrome, and 
intermittent hypobaric hypoxia in experimental animals 
due to its antioxidant function [33, 34]. Recent research 
also implied therapeutic effects of PTX on a model of 
acid-induced ALI and endotoxin-induced ALI [35–38]. 
Furthermore, Mostafa-Hedeab et  al. reported that PTX 
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might exert a protective effects in COVID-19 [39]. While, 
as an effective drug candidate in the treatment of ALI 
induced by chlorine, it still needs to be explored.

Thus, this study was aimed to investigate the potential 
effects of PTX on ALI induced by chlorine. Here, the sta-
tus of oxidative stress, hypoxia, as well as autophagy in 
lung tissues were analyzed. The characteristics of “New 
use of old drugs” can be reflected on PTX.

Materials and methods
Chemicals and reagents
Chlorine was obtained from Jinghua Gas Co., Ltd. 
(Changzhou, China). Pentoxifylline was provided by 
Sigma (St. Louis, MO). Kits for detecting the activity of 
lactate dehydrogenase (LDH), superoxide dismutase 
(SOD), malondialdehyde (MDA), glutathione (GSH) and 
oxidized glutathione (GSSG) were supplied by Nanjing 
Jiancheng Bio-Engineering Institute Co., Ltd. Primary 
antibodies against VEGF, PTEN-induced putative kinase 
1 (PINK1), Parkin and cytochrome-c oxidase subunit 
IV (COX IV) were brought from Santa Cruz Biotech-
nology (Santa Cruz, CA). Antibodies against occludin 
and E-cadherin were bought from Abcam (Cambridge, 
MA, USA). Antibodies against SOD 2 and Beclin 1 were 
bought from CUSABIO BIOTECH CO., Ltd. (Wuhan, 
China). Antibodies against HIF-1α, catalase (CAT), bcl-
xl and β-actin were bought from Merck Millipore Tech-
nology (Burlington, MA), Proteintech Co., Ltd., (Wuhan, 
China), Cell Signaling Technology (Boston, USA) and 
Sigma (St. Louis, MO) respectively. Dihydroethidium 
(DHE) was purchased from Beyotime Co., Ltd. (Shang-
hai, China).

Animals and experimental design
Adult male Sprague-Dawley rats (4–6 weeks old, weigh-
ing 200–220 g) were provided by the Experimental Ani-
mal Center of the Fourth Military Medical University. 
The animals were housed in cages (6 rats per cage) under 
a permanent temperature of 20–25 °C and a 12 h light/
dark cycle. All the rats were allowed free access to food 
and water. Efforts were made to minimize animal suffer-
ing. In this study, animal model of ALI was induced by 
inhaling chlorine (400 ppm) for 5 min. After validation of 
ALI model, according to a random number table, the rats 
were assigned to four experimental groups (6 rats/group). 
(1) normal control (NC) group; (2) chlorine group;(3) 
chlorine + PTX group; (4) PTX group. In addition, rats 
in the PTX and chlorine +PTX groups were intragastri-
cally administrated with PTX (100 mg/kg) 30 min before 
chlorine exposure and treatment 15 min after chlorine 
exposure. The NC and chlorine-treated groups were 
orally administered with equal amounts of normal saline 
at the same time.

Histologic examination
The middle right lung lobes of the rats were fixed in 4% 
formaldehyde for 24 h. After dehydrated, the sections 
were embedded in paraffin and sliced at 3 μm. Follow-
ing deparaffinized and dehydrated, the sectioned tis-
sues were stained with hematoxylin (5 min) and eosin 
(1–2 min) (H&E). A light microscope (BX51; Olympus 
Corporation, Japan) was used to observe the extent of 
histological lung injury.

Detection of ROS formation
According to the previously described method [38], the 
intracellular ROS level was detected using the fluores-
cent dye DHE. Then, the tissue was collected and incu-
bated for 30 min at 37 °C in the dark with 10 μM DHE 
and 10 μM Hoechst. After washed 3 times with PBS, the 
tissues were immediately observed by a laser scanning 
confocal microscopy (FV10i; Olympus Corporation, 
Japan).

Preparation of bronchoalveolar lavage fluid (BALF)
The BALF in the lungs was collected as per Liu et  al. 
[40]. In brief, rats were euthanized with intraperito-
neal pentobarbital sodium, then the bronchus and 
lung were exposed. A 3-mm endotracheal cannula was 
inserted into their trachea. After ligating the hilum 
of right lung, the left lung was lavaged with 5 mL ice-
cold normal saline, which was which retrieved, and 
the recovery rate was > 90%. The BALF samples were 
centrifuged (2000 r/min and 4 °C for 10 min) to pellet 
the cells. Supernatants were removed and stored at 
− 80 °C.

Determination of LDH
A commercial kit was used to determine the amount 
of LDH release following the manufacturer’s protocol. 
Briefly, the samples were transferred to 96-well plates 
and incubated at 37 °C for 15 min in the presence of 
1 mg/ml NADH. Then 2,4-dinitrophenylhydrazine was 
added to the samples at 37 °C for another 15 min. The 
reaction was stopped by addition of 0.4 M NaOH. Data 
was determined as the absorbance at 450 nm using a 
spectrophotometric microplate reader.

Determination of levels of MDA, SOD, GSH, and GSSG
The contents of MDA, SOD, GSH and GSSG in serum 
were determined according to the Kit commercial 
instructions.

Western blotting
The experimental procedure of Western blot analysis 
was carried out as Guo et  al. [41]. Lung tissues were 
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stored at − 80 °C immediately after rats were sacri-
ficed. Tissue samples (100 mg) were ground with a 
homogenizer in 1 mL of RIPA lysis buffer with 1 mM 
PMSF and protease inhibitor. Then the homogen-
ate was centrifuged for 20 min at 14400 r/min at 4 °C 
to collect supernatant. A bicinchoninic acid (BCA) 
assay (Thermo Scientifc, MA, USA) was applied to 
determine the protein concentration. After mixed with 
loading buffer, the supernatants were heated at 100 °C 
for 10 min at a ratio of 1:1. Equal amounts of the total 
proteins from each sample were separated by 6–15% 
SDS-PAGE and transferred onto polyvinylidene dif-
luoride membranes (PVDF; EMD Millipore, Burling-
ton, MA, USA). After blocked with 5% skim milk for 
2 h, the blotted membranes were washed with 0.1% 
Tween-TBS (TBST), and subsequently incubated with 
the primary antibodies at 4 °C overnight. Then the 
membranes were washed with TBST buffer three times 
and incubated with the corresponding secondary anti-
bodies at room temperature for 1 h. After washed with 
TBST again, the bands were visualized by an enhanced 
chemiluminescent (ECL) reagent (Thermo Scientifc, 
MA, USA).

Statistical analysis
All data were expressed as mean ± standard deviation 
(SD) and analyzed with a one-way analysis of variance 
(ANOVA) followed by Tukey’s post hoc test. All the anal-
yses were assessed using the SPSS 13.0. P < 0.05 was con-
sidered statistically significant.

Results
Effect of chlorine on the histological changes and ROS 
accumulation
First, H&E staining was performed to observe the 
abnormalities of gross features in the lungs after chlo-
rine exposure under a light microscope. As shown in 
Fig. 1A-D, the rats in the NC group displayed normal 
appearance and no other histological alteration was 
observed. In contrast, the lung tissues collected from 
the group expose to chlorine exhibited marked his-
topathologic changes, such as alveolar wall thinness, 
edema, hemorrhage and interstitial infiltration by neu-
trophils. The airway pathology led to abnormalities in 
the lung parenchyma with alternating areas of emphy-
sema and atelectasis. Thus, the ALI model had been 
successfully constructed. Applying this model, the ROS 
accumulation was measured by DHE. This probe was 

Fig. 1 Pathologic changes and ROS accumulation in rats exposed to chlorine. A H&E staining in the lungs of rats in NC group (× 200); B H&E 
staining in the lungs of rats in NC group (× 400); C H&E staining in the lungs of rats in chlorine group (× 200); D H&E staining in the lungs of 
rats in chlorine group (× 400); E Confocal microscopy of the lung tissue (× 600); F ROS production measured using DHE. Data are presented as 
mean ± S.D. (n = 3). *P < 0.05 compared with the normal group. H&E: hematoxylin and eosin; NC: normal control; DHE: Dihydroethidium
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oxidized to form intermediate probe-derived radicals 
that were successively oxidized to generate the corre-
sponding fluorescent products [17]. The results dem-
onstrated that ROS level was significantly increased in 
chlorine-treated group (P<0.05) (Fig. 1E-F).

Effects of PTX on levels of MDA, GSH, GSSG and SOD
To investigate the effects of PTX on oxidative stress, 
the expressions of biomarkers for oxidative stress, such 
as MDA, GSH, GSSG and SOD were detected by com-
mercial assay kits. It was confirmed that the levels of 
MDA, SOD and GSSG in chlorine treated rats were 
up-regulated (P<0.05) when compared with the NC 
group, while the effects of PTX administration were 
pronounced (P<0.05), except SOD activity. Moreover, 
expose to chlorine decreased the levels of GSH and 
GSH/GSSG ratio (P<0.05). Administration of PTX 
to animals remarkably up-regulated these indexes 
as compared with rats in the model group (P<0.05) 
(Fig. 2).

Changes in the protein expression levels of SOD1, SOD2 
and CAT 
Since regulation of antioxidases may be able to protect 
against oxidative stress, the present study further inves-
tigated whether PTX could affect the expressions of 
antioxidases. Therefore, the protein expressions levels of 
SOD 1, SOD 2 and CAT were determined. The western-
blot analysis demonstrated that SOD 1 and CAT were 
markedly up-regulated in the chlorine-treated group 
compared with the NC group (P<0.05) (Fig. 3). Treatment 
with PTX could inhibit these expressions (P<0.05). Inter-
estingly, chlorine did not affect the expression of SOD 2.

Effect of PTX on the expression of LDH
As LDH release is positively related to cellular damage, 
the level of LDH was measured to calculate the degree 
of ALI. It was found that secretion levels of LDH both in 
serum and BALF were significantly increased following 
chlorine induction compared with the NC group, while 
treatments with PTX reduced increased LDH levels 
(P<0.05) (Fig. 4).

Fig. 2 The effect of PTX on the content of MDA, SOD, GSH, GSSG and GSH/GSSG ratio. A The content of MDA, B the level of SOD, C the content of 
GSH, D the content of GSSG and E GSH/GSSG ratio. * P < 0.05 compared with the normal group. #P < 0.05 compared with chlorine‑treated group. NC: 
normal control; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: Glutathione; GSSG: oxidized glutathione; PTX: pentoxifylline
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Effect of PTX on hypoxia signaling pathway
Since hypoxemia is considered as a significant charac-
ter of ALI and hypoxia activates the hypoxia signaling 
pathway [17], the protein expressions of HIF-1α, VEGF, 
occludin and E-cadherin were determined. After expo-
sure to chlorine, expressions of HIF-1α, VEGF and 
occludin were significantly up-regulated in the chlorine 
group compared to the NC group (P<0.05). Administra-
tion of PTX caused a significant decrease in these indi-
cators (P<0.05). In addition, the use of PTX resulted in 
up-regulated expression of E-cadherin (P<0.05), com-
pared with the chlorine group (Fig. 5).

Effect of PTX on autophagy
To explore whether the protective effect of PTX was 
associated with autophagy, we detected the level of sev-
eral key autophagy-related proteins. The results demon-
strated that inhaled chlorine significantly down-regulated 
the ratio of LC3 II/LC3 I and the expression of Beclin-1 
and increased the expression of Bcl-xl (P<0.05). Follow-
ing treatment with PTX, the protein expression levels 
were obviously attenuated (P<0.05). To further investi-
gate mitophagy, we searched the expressions of PINK1 
and Parkin in the lung tissue. Interestingly, treatment 
with PTX could promote the expression of PINK1, 

Fig. 3 Effect of PTX on SOD1, SOD2 and CAT protein expression in rat lung tissue following chlorine exposure. A The protein expression levels 
were determined by western blot analysis. B Densitometric analyses of protein expression levels corresponding to (A). * P < 0.05 compared with the 
normal group. #P < 0.05 compared with chlorine‑treated group. NC: normal control; PTX: pentoxifylline; MDA: malondialdehyde; SOD: superoxide 
dismutase; CAT: catalase

Fig. 4 The effect of PTX on the level of LDH. The content of LDH in BALF (A) and serum (B). Data are presented as mean ± S.D. (n = 6). * P < 0.05 
compared with the normal group. #P < 0.05 compared with chlorine‑treated group. NC: normal control; LDH: lactic dehydrogenase; BALF: 
Bronchoalveolar lavage fluid; PTX: pentoxifylline
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however, inhibited the Parkin expression in the lung tis-
sue (P<0.05). Because PINK1 selectively accumulates 
on the surface of damaged mitochondria and initiates 
the mitophagic process, we examined the expressions 
of PINK1 and Parkin in the cytoplasm and mitochon-
dria respectively. The results showed that the PINK1 
protein expression both in cytoplasm and mitochondria 
were significantly increased (P<0.05). The Parkin protein 
expression in cytoplasm increased while decreased in 
mitochondria (P<0.05) (Fig. 6).

Discussion
Chlorine is a highly reactive oxidizing toxic gas which is 
produced globally, such as water purification, bleaching 
of paper, industrial manufacture of several chemicals, and 
for many other purposes [8]. Chlorine gas has been used 
as a chemical weapon since World War I. The easy avail-
ability and inherent toxicity make it attractive to aggres-
sors willing to disrupt infrastructure or cause mass panic 
and casualties. Inhalation of chlorine can produce a range 
of acute pulmonary effects, including impaired lung 
function, inflammatory reactions, increase of epithelial 
permeability, and airway hyperresponsiveness [42]. After 
inhaling chlorine, the features of ALI may be epithelial 
cell death, inflammation, pulmonary edema, hypoxemia, 
and pulmonary function abnormalities, which are key 
aspects in animal models and human clinical studies [43]. 
In present chlorine-exposed rat model, we observed epi-
thelial damage, alveolar injury and inflammation, which 
agreed with previous studies in several animal models 
[44, 45]. We also noticed pulmonary edema and ROS 
accumulation 3 h after chlorine exposure. These data 
from this study combined with our previous findings 

clearly suggested that rat model for chlorine-induced ALI 
is produced successfully.

Currently, anti-inflammatory drugs remain an effective 
therapy for ALI. Treatment with glucocorticoids, such as 
dexamethasone, led to significant improvement of lung 
functions and to reduced inflammation [46]. In clinical 
use for 30 past years, PTX has been licensed for use in 
peripheral vascular disease. It increases the deformabil-
ity of erythrocytes, reduce blood viscosity, and inhibit 
fibrotic progression [47, 48]. Recent researches also dem-
onstrated that PTX exerted beneficial effects in treating 
erectile dysfunction, hearing loss, Peyronie’s disease and 
osteoradionecrosis [49–52]. As well, in a prospective 
study, PTX inhibits COVID-19 severity by reduction of 
IL-6 and c-reactive protein (CRP) and  improved prog-
nosis of patients when combined with antioxidants [53]. 
In the present study, from the perspective of oxidative 
stress and the early research, we explored the interven-
tion effects of PTX.

Due to oxidative stress plays a crucial role in the 
development of ALI [16], we measured oxidative stress 
markers. As an indicator of lipid peroxidation, MDA is 
produced in oxidative cellular damage which indicates 
that ROS is overproduced [54]. PTX treatment caused 
a significant decrease in lung tissue levels of MDA. To 
further investigate related mechanisms, we determined 
antioxidant enzymes and antioxidants. SOD is one of 
the major intracellular antioxidant enzymes that induces 
superoxide anions  (O2−) free radical to hydrogen perox-
ide  (H2O2). Then,  H2O2 can be reduced by converting to 
 H2O in the presence of CAT [55]. As one of the nature 
antioxidants, GSH plays important roles in reducing 
the tissues from damage via detoxifying electrophiles, 

Fig. 5 Effect of PTX on HIF‑1α/VEGF signaling pathway in ALI induced by chlorine. A The protein expression levels were determined by western 
blot analysis. B Densitometric analyses of protein expression levels corresponding to (A). * P < 0.05 compared with the normal group. #P < 0.05 
compared with chlorine‑treated group. NC: normal control; PTX: pentoxifylline; HIF‑1α: Hypoxia‑Inducible Factor‑1α
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Fig. 6 Effect of PTX on autophagy in ALI induced by chlorine. A, C, E and G The protein expression levels were determined by western blot analysis. 
B, D, F and H Densitometric analyses of protein expression levels corresponding to (A, C, E and G) respectively. * P < 0.05 compared with the normal 
group. #P < 0.05 compared with chlorine‑treated group. NC: normal control; PTX: pentoxifylline; PINK1: PTEN Induced Putative Kinase 1
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scavenging ROS, maintaining the essential thiol status 
of proteins, and providing a reservoir for cysteine. Dur-
ing ROS formation, GSH is converted to GSH disulfide 
(GSSG). In the current study, PTX also suppressed 
the levels of SOD1, GSSG and expression of CAT, and 
enhanced the GSH level and GSH/GSSG ratio to protect 
against pulmonary injury. However, there appeared no 
obvious effects on SOD activity when treated with PTX. 
By detecting the protein expressions of SOD1 and SOD2, 
we found that the expression level of SOD2 protein 
showed no significant difference between groups. Thus, 
the failure of PTX to reverse SOD activity may be related 
to the stable expression of SOD2. Based on the observa-
tion, we suggested that PTX has a beneficial antioxidative 
effect on ALI induced by chlorine. Since the activity level 
of LDH reflects the degree of cell injury, subsequently, we 
selected it as a functional indicator of ALI. The results 
showed that PTX treatment ameliorated the level of the 
LDH both in BALF and serum effectively, indicating 
the protective effect of PTX in lung injury induced by 
chlorine.

Hypoxia is closely related to oxidative stress in inflam-
matory lung diseases [56]. In response to hypoxia, 
HIF-1α binds to the hypoxia response element of the 
erythropoietin gene and controls the hypoxic induction 
of HIF-1-mediated gene transcription. In addition, as a 
transcriptional heterodimer, HIF-1exerts a vital patho-
physiological role in oxygen homeostasis [57]. Jahani 
et  al. considered that hypoxia might be a key feature of 
COVID-19 launching activation of HIF-1 [58]. Under 
hypoxic conditions, ROS released from the mitochon-
drial electron transport chain can participate in the reg-
ulation of HIF-1 activity [59]. In this study, we showed 
that PTX directly reversed overexpression of HIF-1α. The 
classical HIF-1α/VEGF signaling pathway also exerts an 
important role in the pathogeneses of ALI and pulmo-
nary edema. Besides, HIF-1α induces and activates the 
overexpression of the VEGF gene, which consequently 
affects the expression of tight junction proteins and adhe-
sion molecules [60, 61]. The present study found that 
PTX significantly inhibited the overexpression of VEGF 
and occludin accompanied by the upregulation of E-cad-
herin, which were in agreement with previous researches 
[62, 63]. These findings showed that the ROS/HIF-1α/
VEGF signaling pathway in the lung tissues of rat models 
in chlorine-induced ALI was activated.

Autophagy, one type of cell death, is a mechanism 
for cell self-protection and self-renewal which relies 
on lysosomes to degrade their own organelles or pro-
teins. As a major cellular defense against oxidative 
stress, autophagy is an intracellular digestion system 
that works as an inducible adaptive response to ALI. 

ROS may activate autophagy, and then facilitate cellu-
lar adaptation and diminish the damaged macromol-
ecules and dysfunctional organelles [64]. However, the 
role of autophagy in the mechanism of ALI has been 
controversial. In a diabetic rat model, when treated 
with autophagy inhibitor 3-methyladenine, the results 
showed more serious ALI [65]. Numerous regulators 
like LC3 II and Beclin 1 play important role in pro-
cess of autophagy induction during lung injury. After 
binding to the lipid derivative phosphatidylethanola-
mine, LC 3 I is converted to form LC 3 II, which ena-
bles fusion with the lysosomes. In addition, the ratio 
of LC 3 I/LC 3 II is used as an indicator of autophagy. 
As a part of a Class III PI3K complex, Beclin 1 takes 
part in autophagosome formation though assembling 
around cargo in a vesicle and combining with lysosome 
[66]. As our results demonstrated, PTX enhanced the 
expression of LC3 II and Beclin 1 accompanied by the 
reducing of Bcl-xl, suggesting that autophagy exerted a 
protective role in ALI induced by chlorine.

Because mitochondria are considered as the main 
contributor of reactive oxygen species, the removal of 
damaged mitochondria by mitophagy plays important 
role in cellular antioxidant defenses [67]. PINK1, as a 
mitochondrially targeted serine–threonine kinase, 
takes part in mitochondrial quality control. Under 
normal conditions, PINK 1 maintains low basal levels 
though importing into the mitochondrial intermem-
brane space and rapidly degraded when combined with 
the presenilin-associated rhomboid-like protein (PARL) 
and the proteasome. When mitochondria are depolari-
zation, PINK1 accumulates on the mitochondrial outer 
membrane (OMM) and results in recruitment of Par-
kin from the cytosol, then activates mitophagy [68]. 
Subsequently, the expressions of PINK1 and Parkin 
were performed to investigate the potential mecha-
nism. Interestingly, PTX had been shown to inhibit the 
expression of PINK1, but increased the expression of 
Parkin. After separating mitochondria and cytoplasm, 
we found that the expression of PINK1 and Parkin in 
mitochondria showed similar trends with these expres-
sion in lung tissues. However, PTX treatment reduced 
the expression of PINK1 and Parkin in cytoplasm 
compared to the chlorine group. These results showed 
that PTX exerted a protective role in attenuating ALI 
induced by chlorine through improving autophagy, 
especially mitophagy.

In conclusion, the present research demonstrated that 
PTX might attenuate chlorine induced ALI through 
regulating oxidative stress, hypoxia and autophagy. 
However, more research will be needed to explore spe-
cific mechanism, which is our direction in the future.
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