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Abstract
Febuxostat is commonly used in clinic for the treatment of hyperuricemia. Multiple-peak phenomenon has 
been observed in human plasma concentration-time profiles of febuxostat, but has not been paid enough 
attention in previous research. This study takes a pivotal step forward by conducting a comprehensive population 
pharmacokinetic (PopPK) analysis of febuxostat in a healthy Chinese cohort, with a central focus on delineating 
its absorption profile under contrasting fasting and fed conditions, while concurrently assessing the influence 
of food alongside other potential covariates on febuxostat’s PK profile. The plasma concentration data used for 
modeling was obtained from two bioequivalence (BE) studies. Subjects were administered febuxostat 20 mg or 
80 mg under fasting or fed condition. Goodness-of-fit plots, visual predict check (VPC), and normalized prediction 
distribution error (NPDE) were used for model evaluation. Based on the established model, PK profiles in healthy 
Caucasian subjects were simulated with parameter adjustment for race difference on clearance and bioavailability. 
Data from 128 subjects were used in the PopPK analysis. Febuxostat concentration-time curves were described by 
a two-compartment model with two deposit absorption compartments and lag times (Tlag). Prandial states (Food) 
showed significant impact on absorption rate ka1 and ka2, as well as Tlag1, and body weight was identified as 
a significant covariate on the apparent distribution volume. The PopPK analysis of febuxostat in healthy Chinese 
volunteers, under both fasted and fed conditions, successfully characterized its PK profile and underscored the 
significant influence of food on absorption. The potential difference of absorption between Chinese population 
and Caucasian population indicated from the simulations needs further investigation.
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Introduction
Febuxostat (2-[3-cyano-4- (2-methylpropoxy)phenyl]-
4-methylthiazole-5-carboxylic acid), approved for the 
treatment of hyperuricemia in adults with gout [1], 
is a nonpurine selective inhibitor of xanthine oxidase 
(XO) acting by decreasing the production of uric acid. 
Febuxostat is a weak acid, practically insoluble in water 
and slightly soluble in methanol. In the Biopharmaceu-
tics Classification System (BCS), febuxostat is classified 
as a low-solubility high-permeability drug (BCS II) [2]. 
It has been reported that febuxostat is relatively rapidly 
absorbed after oral administration and reaches maximum 
plasma concentrations (Cmax) after 0.5 ~ 1.5 h under fast-
ing condition in humans [3]. Febuxostat undergoes both 
phase I and phase II metabolism. And it is extensively 
metabolized by glucuronidation (up to 40%) [3], mainly 
via uridine diphosphate-glucuronosyltransferase (UGT) 
UGT1A1, UGT1A3, UGT1A9, and UGT2B7 [4].

The majority of the pharmacokinetic (PK) studies have 
estimated the PK parameters of febuxostat employing 
conventional non-compartmental methodologies [3, 
5–10], while a limited number of population pharmaco-
kinetic (PopPK) analyses are documented in the existing 
literature [11–15]. Diverging from non-compartmental 
analysis (NCA), model-oriented approaches facilitate 
a superior approximation of drug kinetics and permit a 
deeper understanding of the pharmacokinetic process, 
encompassing aspects such as absorption, distribu-
tion and metabolism [16]. Studies in humans [3, 9, 17] 
have reported the observation of multiple peaks in the 
plasma concentration-time profiles of febuxostat, sug-
gesting that the absorption of febuxostat may not follow 
a simple first-order pattern. However, in the published 
PopPK studies, the multiple-peak phenomenon and 
absorption kinetics of febuxostat has not been adequately 
addressed. A singular exception is the work by Rekić et 
al. [13], which proposed a two-compartment model fea-
turing sequential zero-to-first-order absorption with a 
lag time, eschewing the simplicity of a linear first-order 
absorption model. Their investigation entailed a pooled 
PopPK analysis across a racially diverse cohort includ-
ing healthy volunteers and patients diagnosed with gout 
or hyperuricemia; however, the fasting or fed status dur-
ing febuxostat administration remains unspecified. It is a 
well-established fact that food intake can modulate the 
bioavailability of orally administered drugs by influencing 
drug solubility and gastric emptying rates, thereby poten-
tially altering drug retention within the stomach [18]. 
Consequently, elucidating the impact of food on febuxo-
stat’s absorption kinetics is of paramount importance.

This study primarily aims to conduct a PopPK analysis 
of febuxostat in healthy Chinese subjects, with a particu-
lar emphasis on characterizing absorption under both 
fasting and fed conditions, while concurrently assessing 

the influence of food alongside other potential covariates 
on febuxostat’s PK profile. Additionally, a supplementary 
objective entails utilizing the developed model to simu-
late PK profiles for different populations, probing for any 
disparities in febuxostat absorption characteristics or 
variations in the food effect on absorption between Asian 
and Caucasian populations.

Materials and methods
Study design and data source
Plasma concentration data employed in the PopPK analy-
sis were obtained from two open-label bioequivalence 
(BE) studies, in healthy Chinese adult volunteers under 
both fasting and fed condition. The studies were con-
ducted at the Center of Clinical Pharmacology, the Sec-
ond Affiliated Hospital of Zhejiang University School of 
Medicine (Hangzhou, Zhejiang, China), in accordance 
with Good Clinical Practices and the ethical principles of 
the Declaration of Helsinki [19]. The study protocols were 
approved by the Human Research Ethics Committee of 
the study site. All participants gave written and informed 
consent before participating in any study-related proce-
dures. Only concentration-time profiles after taking the 
reference drug were used in the PopPK modeling.

Details of the study design are elaborated upon in sup-
plementary materials. Briefly, subjects received a single 
20 mg or 80 mg dose of febuxostat in separate BE stud-
ies, with tablet administration accompanied by 240 mL of 
water. Participants fasted for a minimum of 10 h pre-dose 
in the fasting study, whereas a standardized high-fat and 
high calorie meal (800–1000 kcal) was consumed within 
30  min of dosing in the fed condition. Sampling sched-
ules varied slightly between doses but comprehensively 
covered the time course, with blood collections starting 
30  min before dosing up to 48  h post-administration, 
depending on the study arm. Plasma was isolated via 
centrifugation at 3000  rpm and stored at −70  °C until 
analysis using a liquid chromatography-tandem mass 
spectrometry analysis method reported by Xu et al. [20]

Population pharmacokinetic analysis
Data obtained from the two BE studies were pooled for 
PopPK analysis. One-, two- and three-compartment 
models with first-order elimination were explored as 
structural model. In addition, several absorption models 
were investigated, including Weibull, variable exponen-
tial absorption, variable binomial absorption, zero and 
first-order simultaneous absorption, sequential zero to 
first-order with or without lag-time, and double gamma 
absorption model reported by Koloskoff et al. [21]. Log-
normal distributions were assumed for all model param-
eters, with inter-individual variability (IIV) modeled 
exponentially. Residual variability was assessed using 
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proportional, additional, and combined proportional and 
additional error models.

The stepwise covariates modeling (SCM) method was 
employed for covariate selection, with criteria of p < 0.05 
for forward inclusion and p < 0.01 for backward elimina-
tion. Demographic characteristics, including sex, age, 
body weight (WT) and body mass index (BMI) were eval-
uated for their influence on apparent clearance (CL/F) 
and distribution volume. Food intake was evaluated as 
a categorical covariate on the parameters relating to 
absorption (Eq.  1). Linear functions were used for con-
tinuous covariates as Eq. (2).

	 logP = logPTV + θCOV · Food � (1)

	
logP = logPTV + θCOV · log

(
COVi

COVm

)
� (2)

Where PTV  represented the population parameter, while 
P  was the individual parameter; θCOV was the coefficient 
for the effect of the covariate, and COVm  was the median 
value of the covariates (COVi). Food is 0 for the fasted 
state, and food equals 1 for the fed state.

The PopPK analysis was performed using the stochastic 
approximation estimation method (SAEM) via Monolix 
Suite® (version 2023R1, Lixoft SAS, a Simulations Plus 
company). Dataset preparation, exploratory analysis, and 
visualization were accomplished using R software (ver-
sion 3.5.1, The R Foundation for Statistical Computing, 
http://www.r-project.org/). Model selection was based 
on Akaike Information Criteria (AIC), objective function 
value (OFV), goodness-of-fit (GOF) plots as well as the 
plausibility and stability of the model.

Model validation and simulations
Model validations were performed by visual predic-
tive check (VPC) with 1000 simulations based on the 
parameter estimates of the established model. The 
results of VPC were exhibited by overlaying observed 
data with the median, and 5 and 95 percentile curves of 
the predictions with 1000 simulated replicates. Besides, 
normalized prediction distribution error (NPDE) was 
performed for model evaluation. The NPDE results were 
summarized graphically using a histogram of the NPDE, 

and scatterplots of NPDE versus time or population 
predictions.

Based on the final model, the plasma concentration-
time curves of febuxostat under different administration 
schemes in Chinese population were simulated using a 
Monte Carlo method. Besides, the impact of significant 
covariates on the PK behavior of febuxostat were simu-
lated at different levels of the covariate.

Simulation of PK profiles of febuxostat in Caucasian 
population was performed by adding the impact of race 
on PK parameters. Model parameters in the simulation 
were adjusted according to the covariate results reported 
by Rekić et al. [13] Specifically, CL/F was increased and 
relative bioavailability was decreased. Subsequently, the 
model simulated results were compared with the PK 
curves and parameters reported in the literature. The lit-
erature search process and details were described in the 
Supplementary material.

Non-compartmental and statistical analysis
Non-compartmentat analyses (NCA) were performed to 
obtain the key PK parameters of febuxostat in different 
scenarios, as well as to compare the observed and pre-
dicted PK characteristics. Generally, Cmax, tmax, AUC0−t 
and AUC0−∞were calculated and summarized. Student’s t 
test was used to determine the significance between the 
fasted group and the fed group for Cmax, AUC0−t, and 
AUC0−∞. Tmax was analyzed by Wilcoxon test. Differ-
ence at a level of p < 0.05 was considered to be statistically 
significant.

Results
Dataset
A total of 2455 data points from 128 volunteers (includ-
ing 81 male subjects and 47 female subjects) were used in 
the PopPK modeling. Concentration data below the lower 
limit of quantification were omitted for PopPK analysis. 
Demographic characteristics of the included population 
are presented in Table  1. The demographic characteris-
tics of fasting population and fed population showed no 
obvious difference in both two studies. The mean plasma 
concentration-time profiles of febuxostat with standard 
deviation (SD) in the two BE studies grouped by prandial 
states were shown in Fig. 1. The main non-compartment 

Table 1  Summary of the characteristics of the included subjects
20 mg 80 mg
Fasting study Fed study Fasting study Fed study

n 36 31 31 30
Male subjects, n (%) 23 (63.9%) 16 (51.6%) 21 (67.7%) 21 (70.0%)
Age (years), median [range] 27.5 [18.0–44.0] 29.0 [21.0–44.0] 26.0 [21.0–43.0] 26.5 [21.0–42.0]
Body weight (kg), median [range] 61.7 [45.4–73.6] 63.4 [46.3–79.0] 59.5 [47.1–73.7] 60.4 [49.0–78.4]
BMI (kg/m2), median [range] 21.7 [19.6–25.6] 22.8 [19.4–25.8] 21.3 [19.1–25.5] 22.4 [19.4–25.8]
BMI body mass index     

http://www.r-project.org/
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PK parameters of febuxostat in the two BE studies were 
summarized in Table 2. From the results of NCA in our 
study, Cmax had significant difference between the fasted 
and fed population in both 20 mg and 80 mg group, while 
AUC did not show significant difference between fasted 
and fed groups in 80 mg group.

PopPK analysis
Plasma concentrations of febuxostat were well described 
by a two-compartment disposition model. The absorp-
tion of febuxostat was divided into two deposit 

compartments. The absorption from the first depot fol-
lowing a first-order kinetics with a rate constant ka1, 
and with a lag time Tlag1, accounted for F1 fraction 
of the absorbed febuxostat; the remainder absorption 
(1-F1) from the second depot started after a lag time 
Tlag2, followed a first-order kinetics with a rate con-
stant ka2. Structural components of the PK model are 
shown in Fig. 2. After the SCM modeling process, pran-
dial states (Food) showed significant impact on ka1, ka2 
and Tlag1, and body weight was identified as a significant 
covariate on the apparent distribution volume of central 

Table 2  Non-compartment pharmacokinetic parameters of febuxostat in the two BE studies
Parameter Tmax (h)

(median, range)
Cmax (ng/ml)
(mean ± SD)

AUC0 − t (h*ng/ml)
(mean ± SD)

AUC0−∞ (h*ng/ml)
(mean ± SD)

20 mg Fasting (36) 1.25 (0.33, 4.00) 1091 ± 301.0 3499.48 ± 756.66 3552.00 ± 752.93
Fed (31) 1.50 (0.50, 3.50) 856.0 ± 253.7 2926.99 ± 751.55 2984.70 ± 761.04
p value 0.28 0.00095 0.0021 0.0024

80 mg Fasting (31) 1.00 (4.00, 0.33) 4327 ± 1254 15437.21 ± 3222.98 15549.11 ± 3229.06
Fed (30) 1.75 (0.75, 4.00) 3432 ± 1148 13972.88 ± 4003.70 14086.00 ± 4007.47
p value 0.095 0.0051 0.14 0.14

Cmax maximum observed concentration, Tmax time to reach the observed Cmax, AUC0−t area under the plasma concentration-time curve from time zero to the time for 
the last measurable concentration, AUC0−∞ area under the plasma concentration-time curve from time zero to infinity, SD standard deviation

Fig. 2  Structural components of the population pharmacokinetic model

 

Fig. 1  Plasma concentration-time profiles of febuxostat grouped by dose and prandial states. Data were shown as mean and SD. (A) single administration 
of 20 mg or 80 mg febuxostat in the fasted state; (B) single administration of 20 mg or 80 mg febuxostat in the fed state
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compartment (Vc/F) and peripheral compartment (Vp/F). 
Parameter estimates of the final model were shown in 
Table 3. In the fed state, the absorption of febuxostat was 
expected to start later and be slower compared with the 
absorption in the fasted state, since the effect of food 
on ka and Tlag was identified negative and positive, 
respectively. All model parameters were estimated with 

a relative standard error (RSE) less than 30%. The values 
of eta shrinkage were relatively small in the final model 
(<15%).

The ability of the established model to describe the 
observed data can be noted by the plots showing the 
individual model predictions overlaid on the observa-
tions. As a representative plot shown in Fig.  3(A), the 
established model could capture the second peak in the 
fasting study and could fit the concentration-time curve 
of febuxostat in the fed condition. Other individual pre-
diction plots were shown in the supplementary mate-
rials. The NPDE analysis results for the final model are 
presented in Fig.  3(B). The normality of the NPED was 
confirmed by Shapiro Wilk test. Additionally, GOF plots 
of the base model and final model were shown in Supple-
mentary Fig.  1 and Supplementary Fig.  2, respectively. 
VPC plots stratified by dose and prandial state indicated 
adequate model performance were shown in Supplemen-
tary Fig.  3. Furthermore, we calculated the non-com-
partment AUC0−∞ and Cmax of the predicted data, and 
compared the parameters with those of the observed 
data. As shown in Fig. 4, the predicted AUC0−∞ and Cmax 
were close to the observed values.

Model simulations
Utilizing the parameter estimates from the final model, 
simulations in the Chinese population highlighted the 
effect of body weight were shown in Fig. 5. As shown in 
Fig. 5(B), population with a relatively higher body weight 
tend to have a relatively lower drug exposure, but the dif-
ference was slight in the concentration-time profiles of 
febuxostat.

Table 3  Population pharmacokinetic parameters for the final 
model of febuxostat
Parameters Final model 

estimates 
(RSE%)

IIV (CV%) 
(RSE%)

Shrinkage of 
conditional 
distribution 
(%)

ka1 (h−1) 4.02 (11.4) 101.11 (7.62) −1.16
ka2 (h−1) 4.34 (15.6) 150.98 (7.72) −13.6
F1 0.51 (3.7) 32.87 (7.24) −0.499
Tlag1 (h) 0.22 (8.93) 81.13 (6.91) −2.87
Tlag2 (h) 0.92 (7.63) 103.05 (6.64) 9.58
CL/F (L∙h−1) 6.14 (2.26) 25.71 (6.44) −0.725
Vc/F (L) 10.38 (2.07) 17.84 (10.6) −9.03
Q/F (L∙h−1) 1.93 (4.25) 37.81 (11.1) 8.66
Vp/F (L) 10.22 (3.21) 24.62 (10.9) −11.5
Food_ka1 −2.04 (8)
Food_ka2 −1.08 (19.9)
Food_Tlag1 0.73 (18.2)
WT_Vc/F 0.58 (27.9)
WT_Vp/F 1.15 (22.5)
Combined error model parameters
Add. (ng/mL) 2.14 (5.82)
Prop. 0.12 (2.27)
WT body weight, RSE relative standard error, IIV inter-individual variability, CV 
coefficient of variation

Fig. 3  Model evaluations. (A) Representative individual fits of the final model. (B) Graphs of normalized prediction distribution error (NPDE) results for 
the final model
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Based on the final model established in healthy Chi-
nese population, simulation of concentration-time pro-
files in healthy Caucasian subjects was performed both 
under the fasted and fed condition. The bioavailability 
was decreased by 46%, and CL/F was increased to 6.9 L/h 
according to the estimates of fractional difference of race 
reported by Rekić et al. [13]. Other parameters remained 
the same. After literature search and selection, only one 
food effect study reported by Khosravan et al. [22] in 
Caucasian population was identified and included. The 
number of subjects of the simulated population was set 
to be 24, and the demographic characteristics of the sub-
jects were in accordance with those in the reported food 
effect study [22]. Simulated mean concentration-time 
curves of febuxostat and 90% intervals in healthy Cau-
casian population were shown in Fig.  6. The simulated 
PK profiles were in consistent with the reported mean 
concentration-time curves for the elimination phase. 
And the model could predict PK profiles in the fed state 
in general. However, the absorption of febuxostat in the 
fasted state in Caucasian population was underpredicted 
(Fig. 6).

Discussion
In the present study, we conducted a PopPK analysis 
to elucidate the absorption dynamics of febuxostat in 
healthy Chinese volunteers and to quantify the impact 
of food intake on its absorption profile. Our findings 
revealed the multiple-peak phenomenon in the concen-
tration-time courses of febuxostat, more prominently 
observed in the fasting condition than under the fed 
condition. Statistics in our modeling dataset showed 
that approximately 75.0% and 80.6% of subjects admin-
istered 20 mg and 80 mg febuxostat, respectively, in the 
fasting state displayed multiple peaks, and about 40% 
curves showed multiple peaks in the fed study. Although 
it should be noted that these data may be overestimated 
due to including of small shoulders and false count of 
the oscillation in terminal elimination phase by R soft-
ware program, multiple-peak phenomenon of febuxo-
stat observed in our study is surely not a coincidence. 
Besides, dual peaks could also be seen in other reported 
studies [3, 9]. A part of concentration-time profiles pre-
sented multiple peaks reflecting a short of intermittent 
or periodic absorption process that results in febuxo-
stat’s plasma concentration oscillation. The intermittent 

Fig. 4  Observed and predicted AUC0−∞ and Cmax grouped by dose and prandial state
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or periodic absorption suggested by these profiles invites 
further scrutiny of febuxostat’s absorption kinetics, a 
topic not thoroughly addressed in prior research.

Causes of secondary peaks in PK could be classified 
into physicochemical and formulation factors and physi-
ological factors [23]. Physicochemical and formulation 
factors include solubility-limited absorption, modified-
release formulation, etc., while physiological factors 
involve enterohepatic recirculation, gastric emptying, 
site-specific absorption, gastric secretion-enteral reab-
sorption and anesthesia and surgery [23]. Enterohepatic 
circulation is expected to be observed after a meal. How-
ever, the second peak is before 4  h (meal time) in this 
study, so the likelihood of having enterohepatic recir-
culation is very low. And there are no direct studies to 

support enterohepatic cycling of febuxostat in humans 
up to now. Solubility-limited absorption may be relevant 
to the absorption characteristics of febuxostat as it has 
been classified as a BCS II compound.

The abundance of early-phase data encouraged explo-
ration of complex absorption models. We exhaustively 
examined various absorption models, including Weibull 
absorption, sequential zero- to first-order process with 
or without lag-time, simultaneous zero- and first-order 
absorption, variable absorption process, etc. Weibull 
absorption, simultaneous zero- and first-order absorp-
tion, and sequential zero- to first-order absorption model 
could not describe the multiple peaks of febuxostat. 
Double gamma absorption model [21] was not robust 
enough in our study. We found that model with variable 

Fig. 5  Simulated concentration-time profiles of febuxostat in healthy Chinese subjects under fasting or fed condition. (A) Single dose of 20 mg, 40 mg, 
80 mg, and 120 mg febuxostat, body weight of the simulated subject is 60 kg. (B) Single dose of 60 mg febuxostat, body weight of the simulated subjects 
are 50 kg, 60 kg 70 kg and 80 kg, respectively
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absorption process, such as different ka after a certain 
time, or add a complex function on ka could simulate the 
multiple-peak phenomenon. The two-depot absorption 
model was chosen as the final model according to model 
stability and predictive performance. Different absorp-
tion rates over time resulting by the model may be related 
to different regions of the gut [24], as well as the influ-
ences of solubility-limited process, gastric emptying and 
food effect. Variable absorption within different regions 
of the gut was thought to be a probable physiological 
explanation for multiple-peak phenomenon and has been 
cited as the reason for the absorption of acebutolol [25], 
ranitidine [26], talinolol [27] etc.

Body weight is a common covariate identified sig-
nificant for PK parameters such as distribution volume. 
In our study, body weight was added on Vc/F and Vp/F 
in the final model. The results of a PopPK analysis for 
febuxostat in Japanese patients showed that body weight 
significantly influenced CL/F and apparent volume of 
distribution of febuxostat [11]. It has been reported that 
Asian individuals have a higher febuxostat exposure 
than Caucasians independent of body weight [13]. We 
adjusted the model parameters with reference to the 
PopPK estimates reported by Rekić et al. [13], because 
it is the only reported study evaluating race difference. 
The estimated CL/F for healthy Chinese subjects in our 

study was 6.14 L/h, and the CL/F for healthy Caucasian 
subjects in simulation was 6.9  L/h after adjustment. 
This value was less than CL/F reported by Rekić et al. 
(14.58 L/h) [13], but was close to the estimate for healthy 
Australian subjects (6.91  L/h) [15]. Overall, our model 
adequately predicted the distribution and elimination 
phases in Caucasians post-adjustment.

The predicted and observed NCA parameters in 
healthy Caucasian population was summarized in Sup-
plementary Table 1. The ratio of mean predicted value 
and observed value for Cmax, AUC, and Tmax in the fasted 
condition was 0.81, 0.92, and 1.41 respectively (average of 
the 40 mg and 120 mg group). In the fed state, the ratio 
(predicted/observed) of Cmax, AUC, and Tmax was 0.92, 
1.13, and 1.13 respectively. The fed/fasted ratios for the 
observed mean parameters were 0.60, 0.83, and 1.87 
for Cmax, AUC, and Tmax, respectively (average of the 
40 mg and 120 mg group), while the predicted fed/fasted 
ratios for Cmax, AUC, and Tmax were 0.68, 1.02, and 1.53, 
respectively, indicting that the predicted effect of food 
on the PK of febuxostat was less than the observed food 
effect in healthy Caucasian subjects. The results of a two-
compartment first-order absorption model established in 
healthy Australia subjects and patients showed that food 
reduced ka by 87% [15]. From our model results, food 
reduced ka1and ka2 by 87% and 66%, respectively, and 

Fig. 6  Simulated concentration-time profiles of febuxostat in healthy Caucasian subjects. The red dots and triangles are the observed data, the dark grey 
lines are the predicted medians, the grey areas represent the 90% predicted intervals
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Tlag1 was increased in the fed state. Moreover, the pre-
dicted PK profiles based on the established model with 
adjusted parameters CL/F and bioavailability in our study 
were consistent with the observed PK data of febuxostat 
in the fed state, while the model underpredicted the Cmax 
in the fasted state. This indicated that the absorption 
kinetics in the fasted state and the impact of food on the 
absorption of febuxostat may be different between Cau-
casian population and Chinese population.

The difference in the impact of food on the absorption 
of febuxostat between Caucasians and Chinese popu-
lations is likely multifactorial and may be attributed to 
variations in gastrointestinal (GI) physiology, and genetic 
heterogeneities. Factors such as variations in gut motility, 
stomach pH, and intestinal enzyme activity can influence 
drug absorption. Furthermore, variations in gut micro-
biota composition, which can differ between ethnicities 
due to dietary and genetic predispositions, can also play 
a role in drug metabolism and absorption [28]. Genetic 
polymorphisms affecting drug-metabolizing enzymes 
and transporters can vary between populations [29, 30], 
underscoring another layer of complexity. For instance, 
Lin et al. [10] illuminated the role of the UGT1A1 poly-
morphism in the Chinese population, demonstrating 
that individuals who were heterozygous or homozygous 
for the UGT1A1*6 variant experienced a notably higher 
AUC of febuxostat (26% increase) compared to those 
with the wild-type allele. Nevertheless, the genetic poly-
morphism in UGT1A1 alone cannot fully explain the 
differences between Asian and Caucasian populations, 
suggesting the presence of additional, as yet unidentified, 
intrinsic or extrinsic factors that collectively shape this 
intricate PK distinction.

There are some limitations in this study. Although 
the established final model could well characterize the 
observed data, the remaining IIV of Ka and Tlag were 
large and could not be explained by any other covariate. 
The largely varied concentration-time profiles (Fig.  1) 
among individuals may be one of the reasons. Due to the 
limitation of data availability, we could not establish a 
pooled model with different race populations and evalu-
ate the difference of absorption and food effect among 
races directly. The simulation results could not lead to a 
robust quantitative conclusion.

Conclusion
In summary, this PopPK analysis of febuxostat in healthy 
Chinese volunteers, under both fasted and fed condi-
tions, successfully characterized its PK profile and under-
scored the significant influence of food on absorption. 
Body weight was identified as a significant covariate 
effecting on volume of distribution. The race difference of 
absorption dynamics and food effect of febuxostat needs 
further investigation.
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