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Abstract
Background Chronic obstructive pulmonary disease (COPD) pathogenesis is influenced by environmental factors, 
including Benzo(a)pyrene (BaP) exposure. This study aims to identify BaP-related toxicological targets and elucidate 
their roles in COPD development.

Methods A comprehensive bioinformatics approach was employed, including the retrieval of BaP-related targets 
from the Comparative Toxicogenomics Database (CTD) and Super-PRED database, identification of differentially 
expressed genes (DEGs) from the GSE76925 dataset, and protein-protein interaction (PPI) network analysis. Functional 
enrichment and immune infiltration analyses were conducted using GO, KEGG, and ssGSEA algorithms. Feature genes 
related to BaP exposure were identified using SVM-RFE, Lasso, and RF machine learning methods. A nomogram was 
constructed and validated for COPD risk prediction. Molecular docking was performed to evaluate the binding affinity 
of BaP with proteins encoded by the feature genes.

Results We identified 72 differentially expressed BaP-related toxicological targets in COPD. Functional enrichment 
analysis highlighted pathways related to oxidative stress and inflammation. Immune infiltration analysis revealed 
significant increases in B cells, DC, iDC, macrophages, T cells, T helper cells, Tcm, and TFH in COPD patients compared 
to controls. Correlation analysis showed strong links between oxidative stress, inflammation pathway scores, and the 
infiltration of immune cells, including aDC, macrophages, T cells, Th1 cells, and Th2 cells. Seven feature genes (ACE, 
APOE, CDK1, CTNNB1, GATA6, IRF1, SLC1A3) were identified across machine learning methods. A nomogram based 
on these genes showed high diagnostic accuracy and clinical utility. Molecular docking revealed the highest binding 
affinity of BaP with CDK1, suggestive of its pivotal role in BaP-induced COPD pathogenesis.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
progressive and debilitating respiratory condition char-
acterized by persistent airway inflammation and obstruc-
tion, affecting millions of people worldwide [1]. COPD 
is a leading global cause of death, and its prevalence is 
projected to increase, highlighting the urgent need for 
further research in this area [2, 3]. The pathogenesis of 
COPD is multifactorial, involving genetic predisposi-
tions and environmental exposures [4]. Among the envi-
ronmental factors, the polycyclic aromatic hydrocarbon 
commonly found in tobacco smoke, vehicular emissions, 
and industrial pollutants, has garnered significant atten-
tion due to its potential role in COPD [5].

Benzo(a)pyrene (BaP), a major polycyclic aromatic 
hydrocarbon, is commonly identified in terrestrial soils, 
surface water bodies, atmospheric air, and sedimentary 
deposits. This compound is present in tobacco smoke and 
various food items, particularly those subjected to smok-
ing or grilling processes, resulting in widespread human 
exposure. An increasing volume of research underscores 
the hazardous effects associated with this substance [6]. 
Previous studies have established a connection between 
environmental pollutants, including polycyclic aromatic 
hydrocarbon, and the onset and exacerbation of COPD 
[5, 7–9]. BaP is known to exert its toxicological effects 
through the generation of reactive oxygen species (ROS) 
and the activation of inflammatory pathways [10, 11]. 
While several investigations have identified genetic and 
molecular contributors to COPD, the specific toxicologi-
cal targets of BaP in COPD pathogenesis remain under-
explored [12, 13]. Existing research has highlighted the 
need for comprehensive analyses integrating bioinfor-
matics and machine learning techniques to elucidate the 
complex interactions between BaP exposure and COPD.

The motivation behind this research stems from the 
critical necessity to understand the molecular mecha-
nisms underlying BaP-induced COPD. By identifying 
and characterizing the toxicological targets of BaP, we 
aim to uncover novel biomarkers and therapeutic targets, 
potentially transforming the diagnosis and treatment 
strategies for COPD patients exposed to environmental 
pollutants. This study distinguishes itself by employing 
an innovative, multilayered bioinformatics strategy that 
not only integrates traditional analysis with advanced 
machine learning methodologies but also introduces new 

conceptual frameworks for understanding BaP-related 
toxicological effects. This approach underscores the 
interconnectedness of oxidative stress, inflammation, and 
immune cell infiltration, providing unique insights into 
COPD pathogenesis.

The primary objective of this study is to identify BaP-
related toxicological targets and elucidate their roles in 
the development of COPD. To achieve the objective, we 
employed a comprehensive bioinformatics approach. 
BaP-related targets were retrieved from the Compara-
tive Toxicogenomics Database (CTD) and Super-PRED 
database, while DEGs were identified from the GSE76925 
dataset. We performed PPI network analysis to explore 
the interactions among identified targets. Functional 
enrichment and immune infiltration analyses were con-
ducted using GO, KEGG, and ssGSEA algorithms. 
Machine learning methods, including SVM-RFE, Lasso, 
and Random Forest (RF), were utilized to identify BaP-
related feature genes. A nomogram was constructed and 
validated based on the identified feature genes for COPD 
risk prediction. Finally, molecular docking was carried 
out to assess the binding affinity of BaP with the feature 
gene-encoded proteins.

This study elucidates the molecular mechanisms of 
BaP-induced COPD, specifically highlighting the roles of 
oxidative stress and inflammation pathways in promoting 
immune cell infiltration. The identified feature genes may 
serve as potential biomarkers and therapeutic targets, 
offering new avenues for COPD diagnosis and treatment. 
Additionally, the constructed nomogram, demonstrat-
ing high diagnostic accuracy, provides a valuable tool for 
predicting COPD risk in BaP-exposed individuals, with 
significant implications for clinical practice and public 
health.

Methods
Data acquisition and preprocessing
We acquired the dataset GSE76925 and GSE38974, rel-
evant to COPD, from the NCBI Gene Expression Omni-
bus (GEO) database. The GSE76925 dataset consists of 
44 control (Con) samples and 111 COPD samples, serv-
ing as the training set. The GSE38974 dataset includes 9 
Con samples and 23 COPD samples, utilized as the vali-
dation set (Table S1). The raw matrix files were extracted 
and normalized using the Affy package. To convert probe 
data to gene symbols, we utilized the annotation file from 

Conclusions The study elucidates the molecular mechanisms of BaP-induced COPD, specifically highlighting the role 
of oxidative stress and inflammation pathways in promoting immune cell infiltration. The identified feature genes may 
serve as potential biomarkers and therapeutic targets. Additionally, the constructed nomogram demonstrates high 
accuracy in predicting COPD risk, providing a valuable tool for clinical application in BaP-exposed individuals.
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the GPL10558 platform. For genes associated with mul-
tiple probes, the mean value of the probes was used as 
the gene expression value. Genes and samples with more 
than 50% missing values were removed from further 
analysis. For the remaining missing values, we used the 
impute package in R, employing the K-nearest neighbors 
method with K set to 10. Subsequently, median normal-
ization was performed to standardize expression levels 
across the dataset. DEGs between the Con group and the 
COPD group were identified using the limma package. 
Genes with an adjusted P-value of less than 0.05 were 
considered significantly differentially expressed.

Collection of BaP-related targets
We collected a list of genes associated with both COPD 
and BaP exposure using the CTD (http://ctdbase.org/). 
Additionally, we predicted BaP-related targets using 
the Super-PRED database ( h t t p  s : /  / p r e  d i  c t i  o n .  c h a r  i t  e . d 
e / i n d e x . p h p). The target genes from both datasets were 
integrated, and duplicate target genes were removed to 
obtain a list of BaP target genes.

Protein-protein interaction (PPI) network and enrichment 
analysis
To identify common genes between DEGs and BaP-
related targets, we used the Venny tool. These common 
genes were designated as differentially expressed BaP-
related toxic genes. We constructed a PPI network for 
these toxic genes using the STRING database  (   h t t p s : / / s t 
r i n g - d b . o r g /     ) , with a confidence threshold set at 0.7. The 
network visualization was performed using Cytoscape 
software. For Gene Ontology (GO) functional annotation 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of the toxic genes, we used 
the clusterProfiler and enrichplot packages. A threshold 
of adjusted P-value less than 0.05 was set for statistical 
significance.

Immune cell infiltration analysis
To assess the levels of 24 immune cell subtypes within the 
samples, we employed single-sample Gene Set Enrich-
ment Analysis (ssGSEA). The gene sets used to evaluate 
the enrichment levels of different immune cell subtypes 
were obtained from a previous study by Han et al. [14]. 
Using the GSVA algorithm, we calculated the oxidative 
stress and inflammation signaling pathway scores for 
each sample. Pearson correlation analysis was then per-
formed to determine the correlation between the charac-
teristic pathway scores and the immune cell components.

Machine learning
To identify key toxic targets, we utilized three machine 
learning models: Random Forest (RF), Least Absolute 
Shrinkage and Selection Operator (LASSO) regression, 

and Support Vector Machine-Recursive Feature Elimi-
nation (SVM-RFE). We implemented the Random For-
est algorithm using the randomForest package in R, 
which constructs multiple decision trees and ranks the 
importance of each feature based on the mean decrease 
in accuracy or the Gini index. We constructed a forest of 
500 decision trees, with the number of trees determined 
through cross-validation to ensure stability. We also opti-
mized the model parameters, including the maximum 
depth of the trees and the minimum sample size at leaf 
nodes, using a grid search method. LASSO regression 
was performed using the glmnet package in R, apply-
ing L1 regularization to shrink some coefficients to zero 
and effectively selecting significant features. The optimal 
lambda was determined through a 10-fold cross-vali-
dation process aimed at minimizing the mean squared 
error. SVM-RFE was executed with the e1071 package 
in R, recursively eliminating the least important features 
based on their weights within a support vector machine 
classifier to rank the features by importance. For SVM-
RFE, we employed a radial basis function kernel, and 
the hyperparameters, including the penalty parameter 
C and the kernel coefficient gamma, were optimized 
using a grid search coupled with 5-fold cross-validation. 
The results from the RF, LASSO, and SVM-RFE models 
were integrated using the Venny tool to identify common 
important toxic targets.

Construction of artificial neural network (ANN) model
Using the Neural Networks R package, an ANN model 
was developed to examine 7 key genes identified by 
machine learning. The expression levels of these genes 
were converted into gene labels, and their expression lev-
els were compared to the median expression levels across 
all samples. For genes that were upregulated, a value of 
1 was assigned if the expression was above the median, 
otherwise, it was assigned a value of 0. Conversely, for 
down-regulated genes, a value of 0 was assigned if the 
expression level exceeded the median, and 1 otherwise. 
A gene tag table was then constructed, setting the ANN 
hidden layer size to 4 to derive the gene weights from the 
gene labels. Utilize the Receiver Operating Characteristic 
(ROC) curve to assess the predictive efficacy of the ANN 
within both the training and validation datasets.

Development of nomogram
To construct and evaluate the nomogram, we integrated 
the core toxic genes using the rms package in R. The 
nomogram was developed to predict the likelihood of 
COPD. To assess its predictive capability, we performed a 
Receiver Operating Characteristic (ROC) curve analysis, 
which provided insights into the model’s sensitivity and 
specificity. Additionally, a calibration curve analysis was 
conducted to evaluate the accuracy of the nomogram by 

http://ctdbase.org/
https://prediction.charite.de/index.php
https://prediction.charite.de/index.php
https://string-db.org/
https://string-db.org/


Page 4 of 15Deng et al. BMC Pharmacology and Toxicology           (2025) 26:33 

comparing predicted probabilities with actual outcomes. 
To further assess the clinical utility and net benefit of the 
nomogram across different probability thresholds, we 
carried out a decision curve analysis.

Molecular docking
To examine the interactions between small molecule 
compounds and core toxic target proteins, we executed a 
molecular docking analysis. Small molecule compounds 
were retrieved from the PubChem database in SDF 

format. These files were transformed into PDBQT for-
mat using AutoDock Tools for the docking process. The 
three-dimensional structures of the target proteins were 
obtained from the Protein Data Bank  (   h t t p s : / / w w w . r c s b . 
o r g     ) . We prepared these protein structures by removing 
water molecules, adding hydrogen atoms, and assigning 
the correct charges with AutoDock Tools. AutoDock was 
then used to conduct the docking analysis, predicting the 
binding affinities and interaction patterns between the 
small molecules and the target proteins. We analyzed the 
docking results based on binding energy scores to deter-
mine the most favorable binding sites. The interactions 
between the ligands and the target proteins were visual-
ized using PyMOL software (version 1.0.0).

Results
Identification of differentially expressed benzo(a)pyrene-
related toxicological targets in COPD.

A total of 402 benzo(a)pyrene-related targets were 
retrieved from the Comparative Toxicogenomics Data-
base (CTD) and Super-PRED database, while 4523 differ-
entially expressed genes (DEGs) associated with chronic 
obstructive pulmonary disease (COPD) were identified 
from the GSE76925 dataset. The intersection of benzo(a)
pyrene-associated targets and DEGs yielded 72 differ-
entially expressed benzo(a)pyrene-related toxicological 
targets (Fig. 1A). We performed a protein-protein inter-
action (PPI) network analysis on the 72 differentially 
expressed benzo(a)pyrene-related toxicological targets to 
understand their interconnections and potential biologi-
cal implications. The PPI network, presented in Fig. 1B, 
highlights a central cluster of targets, including highly 
connected nodes such as MMP9, CD8A, IL10, SIRT1, 
CTNNB1, and APOE, suggesting their significant roles in 
the pathogenesis of COPD influenced by benzo(a)pyrene 
exposure.

Functional enrichment analysis
As shown in Fig.  2A, GO enrichment analysis was per-
formed on the 72 differentially expressed Benzo(a)
pyrene-related toxicological targets in the context of 
biological processes (BP), cellular components (CC), 
and molecular functions (MF). The significant terms in 
the BP category included response to oxidative stress, 
response to reactive oxygen species, and cellular response 
to chemical stress. In the CC category, significant terms 
such as lamellipodium, lateral plasma membrane, and 
melanosome were identified. For the MF category, serine 
hydrolase activity, serine-type peptidase activity, and cat-
alytic activity were among the enriched terms. As shown 
in Fig.  2B, KEGG pathway enrichment analysis identi-
fied several pathways significantly associated with the 
differentially expressed benzo(a)pyrene-related targets. 
Key pathways included MicroRNAs in cancer, Alzheimer 

Fig. 1 Identification and interaction analysis of differentially expressed 
benzo(a)pyrene-related targets in COPD. A Venn diagram showing the 
intersection of DEGs in COPD from the GSE76925 with benzo(a)pyrene-
related targets obtained from the Comparative Toxicogenomics Database 
and Super-PRED database. B PPI network analysis of the 72 differentially 
expressed benzo(a)pyrene-related toxicological targets. Each node repre-
sents a gene, and edges represent the interactions between them. The 
color intensity of the nodes indicates the degree of connectivity, with red-
der nodes having higher connectivity
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disease, Proteoglycans in cancer, and TNF signaling path-
way. A network representation of the significant KEGG 
pathways and their associated genes was constructed 
(Fig.  2C). Key nodes representing pathways such as 
MicroRNAs in cancer, FoxO signaling pathway, and TNF 
signaling pathway were identified, with links illustrat-
ing the involvement of specific genes in multiple path-
ways. For instance, pivotal genes like PIK3CA, CHUK, 
MAPK10, and IL10 were found to be central within this 
network, underscoring their potential roles in toxic-
ity mechanisms related to benzo(a)pyrene exposure in 
COPD. A Sankey bubble plot was constructed to visual-
ize the enrichment of pathways associated with oxidative 
stress and inflammation in the context of differentially 
expressed benzo(a)pyrene-related toxicological targets 

(Fig. 3). The plot illustrates the connections between the 
identified genes (left) and their corresponding enriched 
pathways (right). Major pathways such as TNF signaling 
pathway, C-type lectin receptor signaling pathway, T cell 
receptor signaling pathway, and FoxO signaling pathway 
are prominently involved in inflammatory responses. 
Simultaneously, pathways including response to oxida-
tive stress, response to reactive oxygen species, cellular 
response to chemical stress, and response to xenobiotic 
stimulus highlight the significant role of oxidative stress. 
The integration of these data underscores the impor-
tance of oxidative stress and inflammatory signaling 
pathways in the toxicological impact of benzo(a)pyrene 
in COPD, highlighting potential therapeutic targets and 
mechanisms.

Fig. 2 Functional and pathway enrichment analysis of differentially expressed benzo(a)pyrene-related targets in COPD. A GO enrichment analysis of the 
72 differentially expressed benzo(a)pyrene-related targets, categorized into biological processes (BP), cellular components (CC), and molecular functions 
(MF). The x-axis represents the -log10 adjusted p-value, indicating the significance of enrichment. B KEGG pathway enrichment analysis displaying the 
significant pathways identified. The x-axis shows the gene ratio, and the color gradient represents the adjusted p-value, with bubble size indicating the 
number of genes involved. C Network representation of significant KEGG pathways and their associated genes. Nodes represent genes, and edges de-
note their involvement in specific pathways. Pathways are marked as red squares, with the size of the squares indicating the number of associated genes
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Assessment of immune cell infiltration
ssGSEA was employed to evaluate the levels of immune 
cell infiltration in the Con and COPD groups. As shown 
in Fig. 4A, the infiltration levels of B cells, DC, iDC, mac-
rophages, T cells, T helper cells, Tcm, and TFH were 
significantly elevated in the COPD group compared to 
the control group (p < 0.05). The heatmap illustrates the 
ssGSEA scores of various immune cell subpopulations 
across all samples (Fig.  4B). It clearly reveals the differ-
ing patterns of immune cell infiltration found in COPD 
patients compared to healthy individuals. These findings 
suggest substantial alterations in immune cell landscapes 
in COPD, providing insights into the immunological 
mechanisms underlying disease pathogenesis and poten-
tial targets for therapeutic interventions.

Evaluation and correlation of oxidative stress and 
inflammation pathway scores with immune cell infiltration
The ssGSEA algorithm was utilized to compare the GSVA 
scores of oxidative stress and inflammation signaling 
pathways between the Con and COPD groups (Fig. 5A). 

The violin plots illustrate a significant increase in the 
scores for both the response to reactive oxygen species 
and TNF signaling pathway in the COPD group com-
pared to the Con group (p < 0.05). The heatmap displays 
ssGSEA scores stratified into low and high groups based 
on response to reactive oxygen species pathway scores 
(Fig.  5B). Notably, this pathway scores were positively 
correlated with the infiltration levels of aDC (R = 0.409, 
p < 0.001), DC (R = 0.299, p < 0.001), macrophages 
(R = 0.475, p < 0.001), neutrophils (R = 0.305, p < 0.001), 
T cells (R = 0.422, p < 0.001), T helper cells (R = 0.285, 
p < 0.001), Tcm (R = 0.313, p < 0.001), Th1 cells (R = 0.495, 
p < 0.001), and Th2 cells (R = 0.338, p < 0.001), indicating 
a significant association between oxidative stress and 
enhanced immune infiltration in COPD. Similarly, the 
correlation between the TNF signaling pathway score and 
immune cell infiltration levels was assessed (Fig. 5C). The 
heatmap shows a positive correlation with key immune 
cell types, including aDC (R = 0.405, p < 0.001), macro-
phages (R = 0.313, p < 0.001), T cells (R = 0.502, p < 0.001), 
T helper cells (R = 0.289, p < 0.001), Th1 cells (R = 0.554, 

Fig. 3 Sankey bubble plot of enriched pathways related to oxidative stress and inflammation. This figure illustrates the relationships between differen-
tially expressed benzo(a)pyrene-related toxicological targets and their enriched pathways associated with oxidative stress and inflammation. On the left, 
individual genes are listed, while the pathways they are involved in are shown on the right. The bubble plot on the right quantifies pathway enrichment, 
with the x-axis representing the rich factor and bubble size indicating the number of genes involved in each pathway. The color gradient represents the 
adjusted p-value, with darker colors indicating higher significance
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p < 0.001), and Th2 cells (R = 0.313, p < 0.001). These 
findings highlight the involvement of TNF signaling in 
promoting immune cell infiltration within the COPD 
environment. In summary, the significantly elevated 
scores for oxidative stress and inflammation pathways 
in the COPD group, along with their strong correlations 
with increased immune cell infiltration, underscore the 
critical role of these signaling events in the pathogenesis 
of COPD induced by benzo(a)pyrene exposure.

Identification of benzo(a)pyrene exposure-related 
signature genes using machine learning
As shown in Fig. 6A, SVM-RFE was employed to identify 
feature genes based on oxidative stress and inflamma-
tion-related gene expression profiles. The plot shows the 
5-fold cross-validation accuracy against the number of 
features, with the maximal accuracy rate of 0.84 achieved 
using 25 features. Lasso regression was used to select 
feature genes. The plot presents the binomial deviance 
as a function of Log(λ), with the optimal λ determined 

Fig. 4 Evaluation of immune cell infiltration levels between control and COPD groups. A Violin plots depicting the ssGSEA scores for various immune cell 
types in Con and COPD groups. Statistical significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001. B Heatmap representing the ssGSEA scores 
of immune cell subpopulations across individual samples in the control and COPD groups. Rows correspond to different immune cell types, and columns 
represent individual samples. The color gradient denotes the infiltration levels, with red indicating higher and blue indicating lower scores
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by the minimum deviance (Fig.  6B). RF algorithm was 
used to rank the importance of genes in distinguishing 
COPD patients. The bar graph displays the top feature 
genes ranked by the mean decrease in Gini coefficient, 
with CTNNB1, APOE, and SLC1A3 among the highest-
ranked (Fig.  6C). Venn diagram illustrating the overlap 
of feature genes identified by the three machine learning 
methods (SVM-RFE, Lasso, and RF). A common set of 
7 feature genes was identified across all methods: ACE, 
APOE, CDK1, CTNNB1, GATA6, IRF1, and SLC1A3 
(Fig.  6D). Violin plots depicting the expression levels of 
the common feature genes between the Con and COPD 
groups in the GSE76925 dataset (Fig.  6E). Significant 
differences (p < 0.001) were observed for all these genes, 
with APOE and SLC1A3 showing increased expression, 
and ACE, CDK1, CTNNB1, GATA6, and IRF1 showing 
decreased expression in the COPD group. To evaluate the 
diagnostic efficacy of the predictive model, the GSE38974 
dataset was utilized for external validation. The genes 
identified through three distinct supervised machine 

learning algorithms were employed for the receiver oper-
ating characteristic (ROC) analysis. The findings indi-
cated an area under the curve (AUC) of 0.884 for the 
GSE38974 dataset (Figure S1). These machine learning 
analyses underscore the robustness of the identified fea-
ture genes, which may serve as biomarkers for benzo(a)
pyrene exposure and contribute to understanding the 
molecular mechanisms underlying COPD pathogenesis.

Construction and validation of a nomogram for COPD risk 
prediction
A nomogram was constructed based on the expres-
sion profiles of the seven identified feature genes (ACE, 
APOE, CDK1, CTNNB1, GATA6, IRF1, SLC1A3) to pre-
dict the risk of COPD in patients exposed to benzo(a)
pyrene (Fig. 7A). Each gene’s expression level is assigned 
a score, and the total score corresponds to a linear pre-
dictor for the probability of COPD. The ROC curve of the 
nomogram model demonstrates an area under the curve 
(AUC) of 0.899, indicating high diagnostic accuracy 

Fig. 5 Evaluation of oxidative stress and inflammation signaling pathways. A Violin plots comparing the scores of the response to reactive oxygen species 
and TNF signaling pathway between the Con and COPD groups using the ssGSEA algorithm. B Correlation of response to reactive oxygen species scores 
with immune cell infiltration. C Correlation of TNF signaling pathway scores with immune cell infiltration. The color gradient in the heatmaps represents 
the Z-scores of immune cell infiltration, with red indicating higher and blue indicating lower levels. The correlation coefficient (R) values and significance 
levels are denoted alongside each cell type. Statistical significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001
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(Fig.  7B). Calibration plot comparing the predicted and 
actual probabilities of COPD. The apparent and bias-
corrected lines closely align with the ideal line, dem-
onstrating that the nomogram model provides reliable 
predictions (Fig.  7C). DCA illustrates the clinical utility 
of the nomogram. The net benefit, as shown by the blue 
line, suggests that using the nomogram to predict COPD 
risk provides a higher net benefit across a wide range of 
risk thresholds compared to treating all patients (red line) 
or none (green line) (Fig. 7D). These results suggest that 
the constructed nomogram, based on benzo(a)pyrene 
exposure-related feature genes, is a robust and reliable 
tool for predicting COPD risk, with high diagnostic accu-
racy and clinical utility.

Construction of an ANN model
Figure  8A depicts the architecture of the ANN model, 
which includes input nodes corresponding to the seven 
feature genes, hidden layers, and an output node for 
the classification of the patient group. The model’s per-
formance was evaluated using ROC curves for both the 

training set and the validation set. In the training set 
(Fig.  8B), the ANN model achieved an AUC of 0.973, 
indicating excellent classification performance. For the 
validation set (Fig. 8C), the AUC was 0.812, demonstrat-
ing robust performance in an independent dataset. These 
results suggest that the identified feature genes and the 
constructed ANN model provide a reliable method for 
distinguishing COPD patients based on benzo(a)pyrene 
exposure, potentially aiding in the early diagnosis and 
targeted treatment of COPD.

Molecular docking evaluation of benzo(a)pyrene with 
proteins encoded by 7 feature genes
Molecular docking was conducted to evaluate the bind-
ing affinity of benzo(a)pyrene with proteins encoded 
by the seven identified feature genes. The Vina scores, 
which represent the binding affinities, were measured 
for each protein-benzo(a)pyrene complex. Notably, the 
docking score for benzo(a)pyrene with CDK1 was the 
lowest at -12.3, indicating the strongest binding affinity 
among the evaluated proteins (Fig. 9A). Other significant 

Fig. 6 Identification of benzo(a)pyrene exposure-related feature genes. A SVM-RFE analysis showing the 5-fold cross-validation accuracy against the 
number of features. B Lasso regression analysis plot of binomial deviance versus Log(λ). C RF feature importance ranking of genes based on the mean 
decrease in Gini coefficient with top-ranking genes including CTNNB1, APOE, and SLC1A3. D Venn diagram depicting the overlap of feature genes identi-
fied by SVM-RFE, Lasso, and RF methods. E Violin plots of expression levels of common feature genes between Con and COPD groups in the GSE76925 
dataset. ***p < 0.001
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binding affinities were observed with ACE (-9.6), APOE 
(-7.3), CTNNB1 (-6.5), GATA6 (-8.3), IRF1 (-6.7), and 
SLC1A3 (-8.8). The molecular surface structure of CDK1, 
highlighting the docking region where benzo(a)pyrene 
binds (Fig.  9B). A detailed view of the docking interac-
tion between benzo(a)pyrene and CDK1, illustrating the 
binding pocket and key interacting residues (Fig.  9C). 
These findings suggest that CDK1, among other feature 
gene-related proteins, has the highest binding affinity 
to benzo(a)pyrene, which may play a crucial role in the 
molecular mechanisms underlying COPD induced by 
benzo(a)pyrene exposure.

Discussion
BaP, a polycyclic aromatic hydrocarbon, is a well-known 
environmental pollutant that has been implicated in 
various respiratory diseases [15, 16]. The relationship 
between BaP exposure and the pathogenesis of COPD 
is of significant concern, as BaP is known to induce oxi-
dative stress and inflammation, both of which are criti-
cal components in the development and progression of 
COPD. Understanding the molecular mechanisms by 
which BaP influences these pathways is essential for iden-
tifying potential therapeutic targets and biomarkers for 
COPD.

Fig. 7 Construction and validation of a nomogram. A Nomogram constructed using the expression levels of seven feature genes to predict COPD risk. 
Each gene’s expression level is assigned a score, which sums to produce the total points and corresponding linear predictor. B ROC curve of the nomo-
gram model. C Calibration plot comparing predicted probabilities versus actual probabilities of COPD risk. D DCA illustrating net benefit across different 
risk thresholds
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Our research underscores the essential role of oxida-
tive stress and inflammatory signaling pathways in the 
toxic effects of BaP exposure in individuals with COPD. 
Through functional enrichment analysis, we identified 
significant pathways involved, including the response to 
reactive oxygen species, TNF signaling pathway, C-type 
lectin receptor signaling pathway, and FoxO signaling 
pathway, underscores the intricate molecular mecha-
nisms through which BaP exacerbates COPD pathology. 
These pathways are not only pivotal for understand-
ing the immediate cellular responses to environmental 
toxins but also provide potential therapeutic targets for 
mitigating the adverse effects of BaP in COPD patients. 

Oxidative stress is a central factor in the progression of 
COPD and has been shown to contribute significantly 
to lung inflammation and tissue damage in response to 
environmental pollutants [8, 17, 18]. BaP, a potent poly-
cyclic aromatic hydrocarbon, is metabolized to reactive 
intermediates that generate ROS, leading to cellular dam-
age and the activation of stress response pathways [19, 
20]. Our analysis revealed the enrichment of pathways 
involved in ROS response, which is consistent with pre-
vious studies demonstrating that BaP exposure induces 
oxidative stress, triggering inflammatory cascades and 
cellular apoptosis in lung diseases [21–23]. In COPD, 
this heightened oxidative environment accelerates the 

Fig. 8 Construction of an ANN model. A The architecture of the ANN model, constructed based on the expression profiles of seven identified feature 
genes (ACE, APOE, CDK1, CTNNB1, GATA6, IRF1, and SLC1A3). B ROC curve for the training set. C ROC curve for the validation set
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degradation of lung tissue and exacerbates airflow limi-
tation [24, 25]. Targeting oxidative stress pathways could 
offer a promising avenue for therapeutic interventions 
aimed at reducing lung injury in COPD patients exposed 
to environmental pollutants. The TNF signaling path-
way is a well-established mediator of inflammation and 
is critical in the pathogenesis of both COPD and BaP 
toxicity [26–28]. Previous studies have shown that BaP 
exposure increases TNF-α levels, which in turn activates 
downstream inflammatory cytokines, contributing to a 
pro-inflammatory microenvironment in the lungs [29–
31]. In COPD, the chronic activation of the TNF path-
way is associated with the recruitment of immune cells, 
increased mucus production, and the destruction of alve-
olar structures [32–35]. Our results support these find-
ings, suggesting that BaP-induced TNF signaling plays a 

pivotal role in exacerbating COPD-related inflammation 
and tissue damage. Thus, therapeutic modulation of TNF 
signaling may help attenuate the inflammatory burden in 
individuals with COPD exposed to BaP. The C-type lec-
tin receptors (CLRs) signaling pathway is integral to the 
recognition of pathogens and the modulation of immune 
responses [36]. Recent studies have highlighted the role 
of CLRs in regulating inflammation, particularly in the 
context of environmental pollutants [37, 38]. In lung 
diseases, CLRs may engage with diverse immune cell 
populations during the mechanisms of tissue injury and 
subsequent repair processes [39]. BaP, through its inter-
action with various immune receptors, may activate CLR 
pathways, which could further amplify the inflammatory 
response in the lungs of COPD patients [40, 41]. This 
connection between environmental toxins and immune 

Fig. 9 Molecular docking analysis. A Heatmap of vina scores representing the binding affinities of benzo(a)pyrene with proteins encoded by the feature 
genes. B Molecular surface representation of the CDK1 protein, showing the overall structure and the docking region for benzo(a)pyrene. C Magnified 
view of the binding interaction between benzo(a)pyrene and the CDK1 protein, highlighting the binding pocket and key interacting residues
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receptor signaling suggests that targeting CLR-mediated 
inflammation could provide a novel approach for reduc-
ing the effects of BaP exposure in COPD. FoxO tran-
scription factors are key regulators of cellular responses 
to oxidative stress, apoptosis, and inflammation. FoxO 
signaling has been linked to the regulation of various 
inflammatory cytokines and cell survival pathways, with 
relevance to chronic diseases like COPD [42–44]. In our 
study, we observed that BaP exposure led to the activa-
tion of FoxO signaling, which may contribute to the 
regulation of genes involved in inflammation and cellu-
lar survival under oxidative stress. Therefore, the activa-
tion of FoxO signaling in response to BaP may represent 
a protective mechanism that attempts to restore cellular 
homeostasis, but if dysregulated, it could further exacer-
bate the pathogenesis of COPD.

Moreover, our assessment of immune cell infiltra-
tion using ssGSEA revealed substantial alterations in 
the immune landscape of COPD patients compared to 
healthy controls. The significant increase in the infiltra-
tion levels of various immune cell types, including mac-
rophages and T cells, aligns with findings from other 
studies that have reported immune dysregulation in 
COPD. The heightened presence of macrophages, sug-
gests a shift towards a pro-inflammatory phenotype that 
may contribute to tissue damage and airway remodel-
ing in COPD patients [45, 46]. These macrophages are 
known to produce a variety of inflammatory cytokines 
and chemokines, which can further recruit additional 
immune cells and perpetuate the inflammatory cycle, 
ultimately leading to exacerbated symptoms and disease 
progression. Additionally, the increased infiltration of T 
cells, especially T helper cells and TFH, highlights the 
role of adaptive immunity in COPD. Studies have shown 
that these T cells may contribute to epithelial cell apop-
tosis and chronic inflammation [47, 48]. The interplay 
between innate and adaptive immune responses is com-
plex, as activated T cells can also influence macrophage 
function, thereby sustaining the inflammatory milieu [35, 
49]. This reciprocal activation reinforces the notion that 
targeting specific immune pathways could be beneficial 
for managing COPD. The correlation between oxidative 
stress and immune cell infiltration is noteworthy. Oxida-
tive stress, which is often exacerbated by environmental 
factors such as cigarette smoke and air pollution, can 
modify the behavior of immune cells, promoting a pro-
inflammatory phenotype [50–52]. This suggests that oxi-
dative stress is not merely a consequence of inflammation 
but rather a driving factor that shapes the immune land-
scape in COPD [53, 54]. Therefore, strategies aimed at 
reducing oxidative stress, such as the use of antioxidants 
or other pharmacological interventions, could potentially 
alter the immune response, reduce inflammation, and 
improve clinical outcomes in COPD patients [55].

The identification of feature genes associated with BaP 
exposure using machine learning techniques provides a 
novel approach to understanding the molecular mecha-
nisms underlying COPD. The common set of seven fea-
ture genes (ACE, APOE, CDK1, CTNNB1, GATA6, IRF1, 
and SLC1A3) identified in our study has not only shown 
significant expression differences between COPD and 
control groups but also highlights their potential as bio-
markers for BaP exposure. Previous research has indi-
cated that these genes are involved in various biological 
processes, including inflammation and cellular stress 
responses [56–60]. The robustness of these feature genes, 
as demonstrated by our machine learning analyses, sup-
ports their relevance in the context of COPD and BaP 
exposure. The construction of a nomogram for predicting 
COPD risk based on the expression profiles of the iden-
tified feature genes represents a significant advancement 
in the field. The high diagnostic accuracy of the nomo-
gram suggests its potential utility in clinical settings for 
identifying individuals at risk of developing COPD due 
to BaP exposure. This aligns with the growing emphasis 
on personalized medicine, where risk assessment tools 
can guide preventive strategies and therapeutic interven-
tions [61]. Furthermore, our molecular docking studies 
revealed that CDK1 exhibits the strongest binding affin-
ity to BaP among the identified feature genes. This find-
ing is particularly intriguing, as CDK1 is known to play 
a crucial role in cell cycle regulation and has been impli-
cated in various cancers and inflammatory diseases [58, 
62]. The interaction between BaP and CDK1 may provide 
insights into the molecular mechanisms by which BaP 
exposure contributes to COPD pathogenesis, warrant-
ing further investigation into the role of CDK1 in this 
context.

Conclusions
In conclusion, our study elucidates the complex inter-
play between BaP exposure, oxidative stress, inflamma-
tion, and immune cell infiltration in the pathogenesis of 
COPD. The identification of key feature genes and the 
development of a predictive nomogram offer promising 
avenues for future research and clinical application. As 
we continue to explore the molecular underpinnings of 
COPD, it is imperative to consider the broader implica-
tions of environmental pollutants like BaP on respiratory 
health. Future studies should aim to validate our findings 
in larger cohorts and investigate the therapeutic potential 
of targeting the identified pathways and genes in COPD 
management.
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