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Abstract
Background  Intracranial aneurysm (IA) is a critical cerebrovascular condition, and nicotine exposure is a known risk 
factor. This study delves into the toxicological mechanisms of nicotine in IA, aiming to identify key biomarkers and 
therapeutic targets.

Methods  Gene Set Variation Analysis (GSVA), Weighted Gene Co-Expression Network Analysis (WGCNA), and 
enrichment analyses were conducted on differentially expressed genes (DEGs) from the GSE122897 dataset. 
Additionally, nicotine-related targets were identified using CTD, SwissTargetPrediction, and Super-PRED databases. 
Integrative machine learning approaches, such as Random Forest (RF) and Support Vector Machine (SVM), were 
employed to pinpoint key toxicity targets. Molecular docking and immune cell infiltration analyses were also 
performed.

Results  DEGs in IA showed significant alterations in metabolic, secretory, signaling, and homeostatic pathways. 
Several immune and metabolic response pathways were notably disrupted. WGCNA identified 1127 DEGs with 37 
overlapping toxic targets between IA and nicotine. ssGSEA revealed substantial upregulation in immune response 
and inflammation-related processes. Integrative analyses highlighted TGFB1, MCL1, and CDKN1A as core toxicity 
targets, confirmed via molecular docking studies. Immune cell infiltration analysis indicated significant correlations 
between these core targets and various immune cell populations.

Conclusion  This study uncovers significant disruptions in metabolic and immune pathways in IA under nicotine 
influence, identifying TGFB1, MCL1, and CDKN1A as critical biomarkers. These findings offer a deeper understanding of 
IA’s molecular mechanisms and potential therapeutic targets for nicotine-related toxicity.
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Introduction
Intracranial aneurysm (IA) is a significant vascular condi-
tion characterized by the abnormal dilation of blood ves-
sels in the brain, which poses considerable risks including 
rupture and subarachnoid hemorrhage [1, 2]. Such events 
can lead to devastating neurological deficits or even 
death, making IA a critical focus of medical research. The 
societal costs associated with IA are substantial, includ-
ing healthcare expenditures and loss of productivity due 
to debilitating outcomes [3]. Current treatment modali-
ties, such as surgical clipping and endovascular coiling, 
present challenges including complications and recur-
rence rates, underscoring the necessity for improved tar-
geted therapies and prevention [4, 5]. Despite advances in 
treatment, the recurrence of IA and its associated com-
plications remain a significant challenge.

IA is associated with a range of genetic, environmental, 
and lifestyle factors, with smoking being recognized as 
a significant risk factor for its development and rupture 
[6–8]. However, while the link between smoking and IA 
is well-established, the precise molecular mechanisms by 
which nicotine contributes to IA formation and rupture 
remain poorly understood. Identifying molecular bio-
markers and therapeutic targets for nicotine-induced IA 
could help mitigate the risks associated with this condi-
tion and guide the development of targeted therapeutic 
interventions.

Numerous studies have implicated smoking and nico-
tine exposure as important contributors to IA forma-
tion and rupture. Nicotine is the main active ingredient 
in tobacco products. By acting on various cellular path-
ways, nicotine can induce vascular inflammation, oxi-
dative stress, and endothelial dysfunction, all of which 
contribute to the formation and development of aneu-
rysms [9–11]. For example, nicotine exposure has been 
shown to facilitate the rupture of aneurysms by exerting 
effects on the α7 subtype of nicotinic acetylcholine recep-
tors located in vascular smooth muscle cells [12]. Clini-
cal studies have also highlighted a correlation between 
smoking and an increased incidence of IA and its rupture 
[7, 13]. While these studies provide important insights 
into the effects of nicotine on IA, the molecular pathways 
that mediate these effects remain unclear, particularly 
concerning gene expression and cellular signaling.

The current gap in research lies in the lack of a com-
prehensive understanding of the molecular alterations 
induced by nicotine exposure in IA. Traditional research 
approaches often fail to capture the complexity of nico-
tine-induced IA, as they do not integrate genomic, tran-
scriptomic, and toxicological data on a systems level. This 
gap presents a major challenge in identifying robust bio-
markers and therapeutic targets that could guide clinical 
intervention.

Modern bioinformatics has facilitated disease diagno-
sis by enabling systematic analysis of complex molecu-
lar datasets by integrating multi-omics profiling and 
advanced computational approaches [14–16]. This 
addresses these challenges by employing advanced bio-
informatics and machine learning techniques to system-
atically analyze the molecular changes in IA induced by 
nicotine exposure. By integrating multiple advanced bio-
informatics tools, such as Gene Set Variation Analysis 
(GSVA), Weighted Gene Co-Expression Network Analy-
sis (WGCNA), and enrichment analyses, to investigate 
gene expression changes in IA. Public databases such as 
Comparative Toxicogenomics Database (CTD), Swis-
sTargetPrediction, and Super-PRED were used to iden-
tify nicotine-related targets. Integrative machine learning 
approaches, specifically Random Forest (RF) and Support 
Vector Machine (SVM), were applied to pinpoint critical 
toxicity targets. Additionally, molecular docking analysis 
and molecular dynamics simulation were conducted to 
examine the interaction between nicotine and key tox-
icity targets, while immune cell infiltration analysis was 
used to explore immune-related alterations in IA. Fig-
ure 1 presents the flowchart of this study.

This study has the potential to provide valuable insights 
for the development of targeted therapeutic strategies by 
uncovering the molecular mechanisms and key therapeu-
tic targets involved in nicotine-induced IA. Identifying 
biomarkers such as TGFB1, MCL1, and CDKN1A may 
facilitate early detection and risk stratification in nico-
tine-exposed individuals. Moreover, understanding the 
immune and metabolic disruptions associated with IA 
could lead to novel therapeutic approaches aimed at miti-
gating the impact of nicotine on cerebrovascular health.

Methods
Data collection and preprocessing
We analyzed the GSE122897 dataset, which encom-
passes gene expression profiles obtained from 16 normal 
samples and 44 samples from patients with IA, sourced 
from the Gene Expression Omnibus (GEO) database 
(Table S1). The probes within this dataset were aligned 
with gene symbols utilizing their corresponding probe 
annotation files. In instances where multiple probes were 
associated with an identical gene symbol, the average 
value of these probes was calculated to denote the final 
expression level of that specific gene. The identification 
of differentially expressed genes (DEGs) between the IA 
cohort and the normal group was performed utilizing the 
limma package (version 3.22.7; usage date: 17 Decem-
ber 2024) [17]. The selection of DEGs was based on an 
adjusted p-value < 0.05.
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GSVA
GSVA was conducted on the DEGs using the GSVA 
package (version 1.50.0; usage date: 17 December 2024) 
in R [18]. This analysis was performed to evaluate the 
enrichment of biological pathways in the IA group com-
pared to the normal group. Gene sets were selected from 
the Molecular Signatures Database (MSigDB), including 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. Pathways with a 
false discovery rate (FDR) of < 0.05 were considered sta-
tistically significant.

WGCNA
WGCNA was performed to explore the correlation 
between gene expression modules and IA. The R package 
WGCNA (version 4.0.2; usage date: 18 December 2024) 
was used to construct a co-expression network based 
on the DEGs [19]. Modules were identified by hierarchi-
cal clustering and dynamic tree cutting. Module-trait 
relationships were calculated to identify the modules 
most strongly associated with IA. Correlations between 
gene significance for IA and module membership were 
evaluated to identify key genes within the most relevant 
modules.

Identification of common toxic targets between IA and 
nicotine exposure
To identify potential toxic targets related to nicotine 
exposure, we used the following databases: CTD ​(​​​h​t​t​p​s​:​/​/​
c​t​d​b​a​s​e​.​o​r​g​/​​​​​)​, SwissTargetPrediction (​h​t​t​p​​:​/​/​​w​w​w​.​​s​w​​i​s​s​​t​a​
r​​g​e​t​p​​r​e​​d​i​c​t​i​o​n​.​c​h​/), and Super-PRED (​h​t​t​p​​s​:​/​​/​p​r​e​​d​i​​c​t​i​​o​n​.​​
c​h​a​r​​i​t​​e​.​d​e​/​i​n​d​e​x​.​p​h​p) (visit date: 17 December 2024) [20, 
21]. We retrieved nicotine-related targets and intersected 
them with the DEGs identified from the grey module in 
the WGCNA analysis. The overlapping targets were iden-
tified, which were further analyzed using heatmap analy-
sis to assess their differential expression between the IA 
and normal groups.

Protein-protein interaction (PPI) network construction
The identified common toxic targets were analyzed for 
PPI using the STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​n​g​-​d​b​.​o​r​g​
/​​​​​) (visit date: 18 December 2024). A confidence score of 
> 0.4 was set to filter reliable interactions. The PPI net-
work was visualized using Cytoscape (version 3.8.2; usage 
date: 18 December 2024) and key hub proteins with the 
highest degree of interaction were highlighted [22].

Single-Sample Gene Set Enrichment Analysis (ssGSEA)
To investigate the molecular effects of nicotine exposure 
on IA, ssGSEA was applied to the 37 overlapping toxic 
targets using the GSVA package (version 1.50.0; usage 

Fig. 1  Flowchart of this study
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date: 17 December 2024) in R. This approach allowed 
us to assess the enrichment of biological processes and 
pathways at the single-sample level. The enrichment 
scores for various biological processes and KEGG path-
ways were compared between the IA and normal groups, 
with statistical significance determined using a Wilcoxon 
test (p < 0.05).

Machine learning analysis
To identify key toxicity targets related to nicotine expo-
sure, machine learning algorithms, including RF and 
SVM, were employed. RF was performed using the 
randomForest R package (version 4.7.1.1; usage date: 
19 December 2024), with key targets ranked by mean 
decrease in the Gini index [23]. For SVM, we used the 
e1071 package (version 1.7.13; usage date: 19 December 
2024) and optimized the model to minimize cross-vali-
dation error [24]. The number of features contributing 
to the best model performance was determined, and the 
top-ranked targets were selected based on their contribu-
tion to model accuracy.

Nomogram construction
A nomogram was constructed based on the expression 
levels of the three core toxicity targets identified (TGFB1, 
MCL1, and CDKN1A) [25]. Expression data for these 
targets were extracted from the GSE122897 dataset and 
analyzed using the rms package (version 6.4.0; usage 
date: 19 December 2024) in R. Each target was assigned a 
score based on its relative expression, and the total score 
was used to predict the risk of IA. The performance of 
the nomogram was evaluated using Receiver Operating 
Characteristic (ROC) curve analysis, and the area under 
the curve (AUC) was calculated to assess predictive accu-
racy. Additionally, calibration curves and Decision Curve 
Analysis (DCA) were performed to assess the clinical 
utility of the nomogram.

Molecular docking analysis
Molecular docking simulations were performed to inves-
tigate the interaction between nicotine and the core tox-
icity targets identified (CDKN1A, MCL1, and TGFB1) 
[26]. The protein structures were retrieved from the Pro-
tein Data Bank (PDB) (https://www.rcsb.org/) (visit date: 
20 December 2024), and docking was performed using 
AutoDock Vina (version 1.1.2; usage date: 20 Decem-
ber 2024) [27]. The protein IDs for these three proteins 
CDKN1A, MCL1, and TGFB1 are as follows: 5E0U, 
2NL9, and 3KFD. The binding affinity of nicotine to each 
target was assessed by calculating the docking score (Vina 
score). The interacting residues were identified by visual-
izing the docking poses in PyMOL (version 2.5.2; usage 
date: 20 December 2024), and key interactions (hydrogen 
bonds and hydrophobic interactions) were analyzed [28].

Molecular dynamics simulations
Molecular dynamics simulations were performed 
employing the Desmond/Maestro 2022.1 software. The 
simulation environment was prepared using the TIP3P 
solvation model with a 0.15 M concentration of NaCl to 
achieve charge neutrality and mimic physiological envi-
ronments. Initial system optimization involved energy 
minimization through the steepest descent algorithm to 
remove steric conflicts and resolve unfavorable atomic 
overlaps in the starting configuration. Following minimi-
zation, the model underwent a 100 ps equilibration phase 
in the NPT ensemble (300 K, 1 bar) to stabilize thermal 
and pressure parameters. Subsequently, a production run 
spanning 100 nanoseconds was conducted under identi-
cal thermodynamic parameters. Trajectory data process-
ing and system characterization were accomplished using 
Desmond’s integrated analysis modules, ensuring a com-
prehensive evaluation of dynamic behaviors.

Immune cell infiltration analysis
Immune cell infiltration levels were estimated using ssG-
SEA to analyze differences in immune cell populations 
between IA and normal groups [29]. The analysis was 
conducted using the GSVA R package (version 1.50.0; 
usage date: 19 December 2024). Differential infiltration 
of various immune cell types was evaluated between the 
two groups. Statistical significance was assessed using the 
Wilcoxon test (p < 0.05). Correlation analyses were per-
formed to assess the relationship between the expression 
levels of core targets and immune cell populations.

Results
GSVA-based enrichment analysis of DEGs in IA
GSVA was performed on the 5235 DEGs identified 
between the normal and IA groups from the GSE122897 
dataset. The GSVA results revealed significant down-
regulation of multiple GO terms in the disease group 
(Figure S1). Significantly downregulated terms comprise 
“regulation of corticosterone secretion,” “response to 
melanocyte-stimulating hormone,” “positive regulation 
of oxytocin production,” “regulation of glycogen meta-
bolic process,” “positive regulation of cAMP-mediated 
signaling,” and “glucose homeostasis.” Other affected 
processes include “secretory granule lumen,” “cellular 
pigmentation,” “negative regulation of tumor necro-
sis factor production,” “regulation of appetite,” “type 4 
melanocortin receptor binding,” “type 3 melanocortin 
receptor binding,” “neuropeptide signaling pathway,” 
“generation of precursor metabolites and energy,” “ner-
vous system development,” and “positive regulation of 
cold-induced thermogenesis.” These findings underscore 
significant alterations in metabolic, secretory, signaling, 
and homeostatic pathways within IA patients, indicating 
potential areas for further investigation into the disease’s 

https://www.rcsb.org/
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underlying mechanisms and therapeutic targets. The 
KEGG enrichment analysis results, depicted in Figure 
S2, indicate that several pathways are upregulated in the 
disease group, including those associated with “Prostate 
cancer,” “Chronic myeloid leukemia,” “Cell cycle,” and 
“Glioma,” which are typically linked to cell proliferation 
and oncogenic processes. In contrast, numerous path-
ways were significantly downregulated in the intracra-
nial aneurysm group. These downregulated pathways 
are predominantly involved in immune response and 
metabolic regulation, including “Asthma,” “Type II dia-
betes mellitus,” “Fc epsilon RI signaling pathway,” “T cell 
receptor signaling pathway,” “RIG-I-like receptor signal-
ing pathway,” “NOD-like receptor signaling pathway,” and 
“Toll-like receptor signaling pathway.” Additional down-
regulated pathways include “Antigen processing and 
presentation,” “Huntington disease,” “Salivary secretion,” 
“Melanogenesis,” “Glycerophospholipid metabolism,” 
“Insulin signaling pathway,” “Retinol metabolism,” “Gap 
junction,” and “Adipocytokine signaling pathway.” These 
findings reveal significant disruptions in immune signal-
ing, metabolic processes, and disease-specific pathways 
in intracranial aneurysm patients, offering insights into 
potential molecular mechanisms and therapeutic targets 
for further research.

WGCNA analysis of DEGs in IA
WGCNA was performed on the expression profiles of 
the 5235 DEGs identified between normal and IA groups. 
Figure  2A depicts the module-trait relationships, high-
lighting the correlation coefficients and their respective 
p-values for distinct gene modules with each trait. Nota-
bly, several modules exhibit strong correlations with IA. 
Figure 2B illustrates the scatter plot of gene significance 
for IA versus module membership in the grey mod-
ule, showing a significant positive correlation (r = 0.63, 
p = 4.4e-129), indicating that genes within this module 
are highly relevant to IA.

Identification and characterization of common toxic 
targets between IA and nicotine exposure
From the Grey module, 1127 DEGs were identified. Uti-
lizing data from the CTD, SwissTargetPrediction, and 
Super-PRED public databases, 637 nicotine-related tar-
gets were obtained. As shown in Fig.  3A, a total of 37 
overlapping toxic targets related to both IA and nicotine 
were identified, representing potential key biomarkers or 
therapeutic targets. The expression patterns of these 37 
toxic targets were further investigated. Figure  3B pres-
ents a heatmap analysis, highlighting distinct expression 
profiles between the normal and IA groups. The heat-
map illustrates considerable variation in gene expres-
sion levels, with several targets showing upregulation 
or downregulation in IA patients compared to normal 

controls. Furthermore, a PPI network analysis was con-
ducted for these 37 toxic targets, as depicted in Fig. 3C. 
The PPI network reveals intricate interactions among 
key proteins, suggesting potential pathways and mecha-
nisms influenced by nicotine that may contribute to the 
pathophysiology of IA. Key nodes within the network, 
such as TNF, CASP3, and HIF1A, indicate central roles in 
the interaction network, underscoring their significance 
in IA development in the presence of nicotine. These 
findings provide insights into the molecular interplay 
between IA and nicotine exposure, highlighting potential 
toxicological mechanisms and avenues for therapeutic 
intervention.

Enrichment analysis of differentially expressed toxicity 
targets related to nicotine exposure using ssGSEA
To investigate the impact of nicotine exposure on IA at 
the molecular level, we conducted ssGSEA on 37 identi-
fied differentially expressed toxicity targets. As shown 
in Fig.  4A, the analysis revealed significant differences 
in several GO biological processes between the normal 
and IA groups. In comparison to the normal group, the 
IA group exhibited substantial enrichment in processes 
related to immune response and inflammation. Specifi-
cally, positive regulation of T-helper 1 cell cytokine pro-
duction, positive regulation of neutrophil extravasation, 
and response to interleukin-1 were significantly upregu-
lated in the IA group. Additionally, the IA group showed 
marked elevations in the interleukin-1-mediated signal-
ing pathway, NF-kappaB binding, and regulation of the 
inflammatory response. Other critical processes showing 
significant divergence included the Fas signaling pathway, 
fatty acid oxidation, and activation-induced cell death of 
T cells. Cell cycle regulation, JNK cascade, and regulation 
of DNA replication also displayed significant differences, 
indicating potential disruptions in cell proliferation and 
stress response mechanisms in IA. KEGG pathway anal-
ysis identified several pathways that were significantly 
altered in the IA group compared to the normal group. 
Notably, pathways associated with autoimmune and 
inflammatory diseases, such as Autoimmune thyroid dis-
ease, Pathways in cancer, and Non-small cell lung cancer, 
were significantly upregulated in the IA group (Fig. 4B). 
Metabolic pathways, including the Adipocytokine sig-
naling pathway, Insulin signaling pathway, and Glyc-
erophospholipid metabolism, were also notably altered. 
Additionally, key signaling pathways involved in neuronal 
functions and immune responses, such as the Neuro-
trophin signaling pathway, TGF-beta signaling pathway, 
and ubiquitin-mediated proteolysis, exhibited significant 
differences. The Antigen processing and presentation 
pathway and Gap junction pathway showed substantial 
enrichment, further underscoring the involvement of 
immune and cellular communication processes in the 
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pathology of IA under nicotine exposure. In conclusion, 
the ssGSEA enrichment analysis highlights a broad spec-
trum of biological processes and pathways that are differ-
entially regulated in IA in response to nicotine exposure. 

These findings provide valuable insights into the molec-
ular mechanisms underlying IA and suggest potential 
therapeutic targets for mitigating the effects of nicotine 
on IA progression.

Fig. 2  WGCNA analysis of DEGs in IA. (A) Module-trait relationships were determined from WGCNA of DEGs between normal and IA groups. The heatmap 
displays the correlation coefficients (colored) and their associated p-values for each module’s relationship with the traits (normal vs. IA). Positive correla-
tions are indicated in red, and negative correlations are indicated in green. (B) Scatter plot of gene significance for IA versus module membership in the 
grey module
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Identification of key toxicity targets related to nicotine 
exposure using integrative machine-learning approaches
As shown in Fig. 5A, The application of the RF algorithm 
identified 8 key toxicity targets, ranked by their mean 
decrease in the Gini index. Using the SVM algorithm, 
we identified 24 significant toxicity targets by optimiz-
ing the number of features to minimize cross-validation 
error and maximize accuracy. The number of features 
corresponding to the minimum error rate (0.17) was 24, 
while the maximum accuracy rate (0.83) was achieved 
with 24 features (Fig.  5B and C). The top 10 key nodes 
in the PPI network were identified based on the degree 
of connections. Notable targets included TGFB1, MCL1, 

CDKN1A, and other highly connected proteins such 
as CASP3, TNF, and HIF1A (Fig.  5D). A Venn diagram 
integrating the results from RF, SVM, and PPI analy-
ses revealed 3 core toxicity targets (TGFB1, MCL1, 
and CDKN1A) as critically involved across all methods 
(Fig. 5E).

Nomogram construction for key toxicity targets in IA
In the GSE122897 dataset, the expression levels of 
three core toxicity targets were analyzed and compared 
between normal and IA groups (Fig.  6A). The results 
showed that the expression levels of CDKN1A, MCL1, 
and TGFB1 were significantly higher in IA patients 

Fig. 3  Identification and analysis of common targets between IA and nicotine-related targets. (A) Venn diagram showing the overlap between DEGs 
in the Grey module and nicotine-related targets. (B) Heatmap analysis of the 37 common toxic targets, illustrating the differential expression profiles 
between normal and IA groups. The color gradient represents the relative expression levels, with red indicating upregulation and blue indicating down-
regulation. (C) PPI network of the 37 common toxic targets. The nodes represent proteins, while the edges represent interactions between them
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compared to the normal group (p < 0.001 for all genes). 
A nomogram was constructed based on the expression 
profiles of the three core targets: TGFB1, MCL1, and 
CDKN1A (Fig. 6B). Each gene was assigned a score that 
correlates with its expression level, and the total score 
was used to predict the risk of IA. The predictive per-
formance of the nomogram was evaluated using ROC 
analysis, which showed an AUC of 0.852, indicating good 
predictive accuracy (Fig.  6C). Calibration of the nomo-
gram demonstrated close alignment between predicted 
and actual probabilities, suggesting reliable predictive 
performance (Fig. 6D). DCA was also conducted to assess 
the clinical utility of the nomogram. The DCA curve 
indicated that the nomogram provides a higher net ben-
efit across a range of risk thresholds compared to the “all” 
or “none” strategies (Fig. 6E). In summary, the expression 
analysis confirmed that TGFB1, MCL1, and CDKN1A 
are significantly upregulated in IA patients. The con-
structed nomogram based on these core genes exhibited 
good predictive performance for IA risk, underscoring its 
potential clinical utility.

Molecular docking analysis of nicotine with core toxicity 
targets
To assess the interaction between nicotine and the core 
toxicity targets identified in IA, we performed molecular 
docking studies. The interaction between nicotine and 
CDKN1A (Fig. 7A) yielded a Vina score of -5.5, suggest-
ing a moderate binding affinity. Key residues involved 
in the binding pocket include E55, G34, T51, G127, and 

H152, which form hydrogen bonds and hydrophobic 
interactions with nicotine. Docking analysis of nico-
tine with MCL1 (Fig.  7B) resulted in a Vina score of 
-5.0, indicating a lower binding affinity than CDKN1A. 
Important interactions were observed with residues such 
as E68, F69, Y72, and Y73. These interactions contrib-
ute to the stability of the nicotine-MCL1 complex. The 
docking of nicotine with TGFB1 (Fig.  7C) revealed the 
strongest binding affinity among the three targets, with 
a Vina score of -6.0. Crucial residues in the binding site 
include I42, N44, N14, W52, and I51, which engage in 
both hydrophobic and polar interactions with nicotine. 
In summary, molecular docking analysis indicated vary-
ing degrees of interaction between nicotine and the core 
toxicity targets TGFB1, MCL1, and CDKN1A. Among 
these, TGFB1 exhibited the highest binding affinity, signi-
fying its potential significance in the context of nicotine-
induced IA pathology. The results from the molecular 
dynamics simulation of the nicotine-TGFB1 complex are 
depicted in Figure S3. The RMSD of the complex (blue 
line) initially exhibits fluctuations ranging from approxi-
mately 2.0 Å to 4.0 Å. After the initial equilibration phase, 
the protein RMSD stabilizes around 2.5 Å to 4.0 Å with 
minor fluctuations, indicating a relatively stable confor-
mational state of the nicotine-TGFB1 complex during the 
simulation period. These molecular dynamics simulation 
results corroborate the molecular docking predictions, 
demonstrating that nicotine remains bound to TGFB1.

Fig. 4  Enrichment analysis of differentially expressed nicotine-related toxicity targets. (A) Box plots represent the ssGSEA scores for various GO terms in 
the normal and IA groups. (B) Box plots show the ssGSEA scores for different KEGG pathways in normal and IA groups. Immune response and inflamma-
tion-related processes are upregulated in the IA group. *p < 0.05, **p < 0.01, ***p < 0.001
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Immune cell infiltration analysis
To investigate the immune landscape associated with 
IA, we evaluated the immune cell infiltration levels 
between normal and IA groups using the ssGSEA algo-
rithm. A heatmap representation (Fig.  8A) illustrates 
the differential infiltration levels of various immune cell 
types between normal and IA samples. The IA group 
exhibited a distinct immune infiltration pattern com-
pared to the normal group, with notable differences in 
several immune cell populations. A quantitative com-
parison of the ssGSEA scores between normal and IA 
groups (Fig.  8B) revealed statistically significant differ-
ences in specific immune cell populations. Specifically, 
the IA group showed increased infiltration of immune 
cells, including aDC, iDC, macrophages, neutrophils, 
NK CD56dim cells, T cells, Tem, and Th1 cells (*p < 0.05, 
**p < 0.01, ***p < 0.001). Conversely, there was a signifi-
cant reduction in the infiltration of pDC and TFH in 
the IA group (*p < 0.05, **p < 0.01). Correlation analysis 

of CDKN1A expression with immune cell infiltration 
levels (Fig.  9A) revealed significant positive correlations 
with NK cells (R = 0.422, p < 0.001), Th1 cells (R = 0.393, 
p < 0.01), and NK CD56dim cells (R = 0.269, p < 0.05). 
Conversely, CDKN1A expression showed significant neg-
ative correlations with TFH cells (R = -0.589, p < 0.001). 
The expression of MCL1 exhibited significant positive 
correlations with several immune cell types, including 
Th1 cells (R = 0.644, p < 0.001), neutrophils (R = 0.491, 
p < 0.001), eosinophils (R = 0.465, p < 0.001), and aDC 
(R = 0.453, p < 0.001) (Fig.  9B). Correlation analysis for 
TGFB1 demonstrated significant positive correlations 
with NK CD56dim cells (R = 0.612, p < 0.001), macro-
phages (R = 0.388, p < 0.01), and aDC (R = 0.378, p < 0.01) 
(Fig. 9C). Significant negative correlations were noted for 
TFH cells (R = -0.503, p < 0.001). In summary, the corre-
lation analysis revealed that the expression levels of core 
toxicity targets CDKN1A, MCL1, and TGFB1 are signifi-
cantly associated with various immune cell infiltration 

Fig. 5  Identification of key toxicity targets related to nicotine exposure in IA. (A) Identification of 8 key toxicity targets using the RF algorithm, ranked 
by mean decrease in Gini index. (B) SVM algorithm performance in terms of cross-validation error across varying numbers of features. (C) SVM algorithm 
performance shows cross-validation accuracy. (D) PPI network analysis, identifying the top 10 key nodes based on their degree of connection. (E) Venn 
diagram integrating results from RF, SVM, and PPI analyses
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levels in IA. These findings suggest that these core genes 
may play critical roles in modulating the immune micro-
environment in IA, influenced by nicotine exposure.

Discussion
IA is a significant vascular condition characterized 
by the abnormal dilation of arterial walls in the brain, 
which poses serious health risks due to the potential for 
rupture. The rupture of an IA can lead to subarachnoid 
hemorrhage, often resulting in severe neurological defi-
cits or death, making it a critical concern in neurology 
and vascular health. The prevalence of unruptured IA in 
the adult population is estimated to be between 2% and 
6%, with known risk factors including smoking, hyper-
tension, and genetic predisposition [30]. Understanding 
the molecular mechanisms underlying IA formation and 
progression, especially in the context of environmental 
factors such as nicotine exposure, is essential for devel-
oping effective diagnostic and therapeutic strategies [31]. 
Our findings underscore significant alterations in gene 

expression and immune responses associated with IA, 
thereby identifying potential biomarkers and therapeu-
tic targets. Importantly, we have constructed a predictive 
nomogram based on key toxicity targets related to both 
IA and nicotine exposure, which could serve as a valuable 
tool for clinical risk assessment. Furthermore, the inte-
gration of advanced bioinformatics methodologies allows 
for a deeper understanding of the molecular interactions 
involved in IA pathophysiology, paving the way for future 
research and improved clinical outcomes.

Our analysis revealed critical changes in immune 
response and inflammatory pathways in the IA group 
compared to the normal group. Notably, we observed 
significant involvement of processes such as the positive 
regulation of T-helper 1 (Th1) cell cytokine production, 
neutrophil extravasation, and interleukin-1 (IL-1)-me-
diated signaling. These results align with previous stud-
ies indicating that inflammation plays a crucial role in 
IA pathophysiology [11, 32]. Several studies have shown 
that inflammatory cytokines, such as IL-2, TNF-α, IL-1β, 

Fig. 6  Nomogram construction for key toxicity targets in IA. (A) Gene expression levels of TGFB1, MCL1, and CDKN1A in normal and IA groups from the 
GSE122897 dataset. Red boxes represent IA samples, blue boxes represent normal samples. *** p < 0.001. (B) The nomogram was constructed based on 
the expression profiles of TGFB1, MCL1, and CDKN1A to predict IA risk. (C) The receiver operating characteristic (ROC) curve for the nomogram, shows an 
area under the curve (AUC) of 0.852. (D) Calibration plot for the nomogram, demonstrating the agreement between predicted and actual probabilities. 
(E) Decision curve analysis (DCA) shows the net benefit of the nomogram compared to the “all” and “none” strategies across different risk thresholds
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Fig. 7  Molecular docking analysis. (A) Interaction of nicotine with CDKN1A. (B) Interaction of nicotine with MCL1. (C) Interaction of nicotine with TGFB1
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Fig. 8  Immune cell infiltration analysis in IA. (A) Heatmap illustrating the differential infiltration levels of various immune cell types between normal 
(blue) and IA (red) samples. (B) Box plots comparing the ssGSEA scores of immune cell populations between normal and IA groups. *p < 0.05, **p < 0.01, 
***p < 0.001
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Fig. 9  Correlation between core toxicity targets and Immune cell infiltration levels. (A) Correlation analysis between CDKN1A expression and immune 
cell infiltration levels. (B) Correlation analysis between MCL1 expression and immune cell infiltration levels. (C) Correlation analysis between TGFB1 expres-
sion and immune cell infiltration levels. *p < 0.05, **p < 0.01, ***p < 0.001

 



Page 14 of 16Ma et al. BMC Pharmacology and Toxicology           (2025) 26:86 

MCP-1, and IL-4, are elevated in IA patients and are 
involved in vascular remodeling and rupture [33, 34]. 
Specifically, the IL-1 signaling pathway, which exhib-
ited a notable upregulation in our research, has been 
demonstrated to have the potential for IL-1 to provoke 
inflammatory responses within the aneurysmal wall. This 
inflammatory activity may be associated with the rupture 
of IA [35, 36]. The activation of NF-kappaB signaling, a 
key regulator of immune and inflammatory responses, 
is another important finding in our study. Nicotine has 
been previously implicated in the activation of NF-kap-
paB in various cell types, including endothelial cells and 
vascular smooth muscle cells, leading to the production 
of pro-inflammatory mediators that may exacerbate IA 
progression [37–39]. Our data corroborate these findings 
by showing significant enrichment of NF-kappaB binding 
and inflammatory response regulation in the IA group. 
This suggests that nicotine may act as a potent modulator 
of inflammatory pathways in IA, contributing to chronic 
inflammation and immune cell recruitment, both of 
which are key factors in aneurysm development and rup-
ture [40, 41].

In addition to immune and inflammatory processes, we 
identified significant disruptions in metabolic and cel-
lular pathways, including fatty acid oxidation, cell cycle 
regulation, and DNA replication. These findings highlight 
the critical role of altered metabolic processes in vascular 
cells, which have been linked to the pathogenesis of IA. 
Studies have suggested that endothelial cell metabolism 
is a key regulator of vascular remodeling and that disrup-
tion of metabolic pathways can lead to endothelial dys-
function, a hallmark of aneurysm formation [9, 42]. Our 
identification of altered fatty acid oxidation and DNA 
replication pathways in IA under nicotine exposure adds 
new dimensions to our understanding of the metabolic 
disruptions that may contribute to the instability of the 
aneurysmal wall.

Through integrative machine learning approaches, we 
identified three core toxicity targets (TGFB1, MCL1, and 
CDKN1A) that were consistently implicated across vari-
ous analyses and were found to be significantly upregu-
lated in IA patients. These genes demonstrated strong 
associations with immune cell infiltration, providing 
further evidence of their involvement in IA pathophysi-
ology. Transforming growth factor-beta 1 (TGFB1) is a 
key mediator of fibrosis, extracellular matrix remodel-
ing, and immune response regulation. It plays a criti-
cal role in vascular smooth muscle cell dysfunction and 
the formation of aneurysms [43, 44]. Elevated TGFB1 
expression in IA patients, as observed in our study, sup-
ports its role in modulating the inflammatory environ-
ment within the aneurysmal wall. Previous studies have 
shown that TGFB1 promotes the recruitment of inflam-
matory cells and the deposition of collagen, leading to the 

structural remodeling of the vessel wall and potentially 
facilitating aneurysm growth and rupture [45, 46]. Our 
findings suggest that TGFB1 could serve as a potential 
therapeutic target for mitigating the effects of nicotine-
induced vascular remodeling in IA. Myeloid cell leuke-
mia-1 (MCL1) is an anti-apoptotic protein that has been 
shown to protect immune cells from apoptosis and pro-
mote cell survival under inflammatory conditions [47, 
48]. Our analysis revealed significant positive correla-
tions between MCL1 expression and various immune 
cell populations, including Th1 cells, neutrophils, and 
macrophages, suggesting that MCL1 may play a crucial 
role in sustaining the inflammatory response within the 
IA microenvironment. This is consistent with studies 
that have highlighted the role of MCL1 in maintaining 
chronic inflammation in vascular diseases [49, 50]. Tar-
geting MCL1 could therefore be a promising strategy to 
modulate immune responses and reduce inflammation in 
IA patients exposed to nicotine. Cyclin-dependent kinase 
inhibitor 1 A (CDKN1A), regulates cell cycle progression 
and plays a key role in cell cycle arrest and DNA dam-
age response [51]. Our correlation analysis revealed sig-
nificant associations between CDKN1A expression and 
various immune cell populations, including NK cells 
and Th1 cells. This suggests that CDKN1A may not only 
influence cell cycle regulation in vascular cells but also 
modulate immune cell activation and proliferation within 
the aneurysmal microenvironment. CDKN1A is involved 
in immune response regulation in several inflammatory 
diseases, and its upregulation in IA could contribute to 
chronic inflammation and immune cell dysregulation 
[52, 53]. Targeting CDKN1A could potentially restore 
immune homeostasis and mitigate the inflammatory 
response in IA patients.

The activation of macrophages and the inflamma-
tory response are vital factors in the development and 
advancement of IA [54]. Our immune cell infiltration 
analysis revealed significant changes in the immune land-
scape of IA, with increased infiltration of pro-inflamma-
tory immune cells, including macrophages, neutrophils, 
and Th1 cells, and a concomitant reduction in the infil-
tration of regulatory cells such as TFH cells and pDC. 
This altered immune cell profile suggests that nicotine 
exposure may shift the immune response in IA towards 
a more pro-inflammatory and Th1-dominant pheno-
type, which has been associated with the progression of 
various vascular diseases, including IA [33, 34, 55]. The 
increased presence of macrophages and neutrophils, 
which are known to release pro-inflammatory cytokines 
and reactive oxygen species, further supports the idea 
that nicotine-induced inflammation plays a key role in 
the pathogenesis of IA [56, 57].

Finally, the construction of a predictive nomogram 
based on the expression levels of TGFB1, MCL1, and 
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CDKN1A, achieving an AUC of 0.852 in ROC analysis, 
represents a significant step forward in clinical deci-
sion-making for IA risk assessment. This nomogram 
could enhance the ability to predict IA and guide future 
research toward validating and refining this model for 
broader clinical application. The integration of such pre-
dictive tools into routine clinical practice holds promise 
for improving patient outcomes and individualized care 
strategies.

The limitations of this study should be acknowledged, 
as they may impact the interpretation of the results. 
Firstly, the relatively small sample size may limit the 
generalizability of the identified differentially expressed 
genes and pathways. Additionally, without clinical vali-
dation analyses, the clinical applicability of our findings 
remains uncertain. These limitations highlight the need 
for further research to corroborate our findings and 
explore the clinical implications.

Conclusions
In conclusion, this study demonstrates significant altera-
tions in gene expression and immune responses associ-
ated with intracranial aneurysm under nicotine exposure, 
while successfully identifying key toxicity targets and 
developing a predictive nomogram. These findings not 
only enhance our understanding of the molecular mecha-
nisms underlying IA but also pave the way for targeted 
interventions and improved risk assessment strategies in 
its management. Future research should focus on validat-
ing these results through experimental approaches and 
exploring their clinical applications, thereby contribut-
ing to more effective therapeutic strategies for patients 
affected by IA.
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